1 Commits

Author SHA1 Message Date
b96e0e0008 slimming before fastapi refactor 2026-01-02 22:10:13 -07:00
9 changed files with 231 additions and 557 deletions

View File

@@ -62,7 +62,6 @@ A Python tool that uses OpenAI-compatible AI endpoints to generate creative writ
daily-journal-prompt/
├── README.md # This documentation
├── generate_prompts.py # Main Python script with rich interface
├── simple_generate.py # Lightweight version without rich dependency
├── run.sh # Convenience bash script
├── test_project.py # Test suite for the project
├── requirements.txt # Python dependencies
@@ -78,7 +77,6 @@ daily-journal-prompt/
### File Descriptions
- **generate_prompts.py**: Main Python script with interactive mode, rich formatting, and full features
- **simple_generate.py**: Lightweight version without rich dependency for basic usage
- **run.sh**: Convenience bash script for easy execution
- **test_project.py**: Test suite to verify project setup
- **requirements.txt**: Python dependencies (openai, python-dotenv, rich)
@@ -102,8 +100,6 @@ chmod +x run.sh
# Interactive mode with rich interface
./run.sh --interactive
# Simple version without rich dependency
./run.sh --simple
# Show statistics
./run.sh --stats
@@ -132,8 +128,6 @@ python generate_prompts.py --interactive
# Show statistics
python generate_prompts.py --stats
# Simple version (no rich dependency needed)
python simple_generate.py
```
### Testing Your Setup

View File

@@ -234,16 +234,6 @@ class JournalPromptGenerator:
self.historic_prompts = updated_prompts
self._save_historic_prompts()
def _prepare_prompt(self) -> str:
"""Prepare the full prompt with historic context."""
# Format historic prompts for the AI
if self.historic_prompts:
historic_context = json.dumps(self.historic_prompts, indent=2)
full_prompt = f"{self.prompt_template}\n\nPrevious prompts:\n{historic_context}"
else:
full_prompt = self.prompt_template
return full_prompt
def _parse_ai_response(self, response_content: str) -> List[str]:
"""

10
run.sh
View File

@@ -35,7 +35,6 @@ fi
# Parse command line arguments
INTERACTIVE=false
SIMPLE=false
STATS=false
POOL_STATS=false
FILL_POOL=false
@@ -47,10 +46,6 @@ while [[ $# -gt 0 ]]; do
INTERACTIVE=true
shift
;;
-s | --simple)
SIMPLE=true
shift
;;
--stats)
STATS=true
shift
@@ -80,7 +75,6 @@ if [ "$HELP" = true ]; then
echo ""
echo "Options:"
echo " -i, --interactive Run in interactive mode (with rich interface)"
echo " -s, --simple Run simple version (no rich dependency)"
echo " --stats Show prompt history statistics"
echo " --pool-stats Show prompt pool statistics"
echo " --fill-pool Fill prompt pool using AI (makes API call)"
@@ -89,7 +83,6 @@ if [ "$HELP" = true ]; then
echo "Examples:"
echo " ./run.sh # Draw prompts from pool (default)"
echo " ./run.sh -i # Interactive mode"
echo " ./run.sh -s # Simple version"
echo " ./run.sh --stats # Show history statistics"
echo " ./run.sh --pool-stats # Show pool statistics"
echo " ./run.sh --fill-pool # Fill prompt pool using AI"
@@ -108,9 +101,6 @@ elif [ "$FILL_POOL" = true ]; then
elif [ "$INTERACTIVE" = true ]; then
echo "🎮 Starting interactive mode..."
python3 generate_prompts.py --interactive
elif [ "$SIMPLE" = true ]; then
echo "⚡ Running simple version..."
python3 simple_generate.py
else
echo "✨ Drawing prompts from pool..."
python3 generate_prompts.py

View File

@@ -1,319 +0,0 @@
#!/usr/bin/env python3
"""
Simple Daily Journal Prompt Generator
A lightweight version without rich dependency.
"""
import os
import json
import sys
import argparse
import configparser
from datetime import datetime
from typing import List, Dict, Any
from openai import OpenAI
from dotenv import load_dotenv
class SimplePromptGenerator:
"""Simple version without rich dependency."""
def __init__(self, config_path: str = ".env"):
"""Initialize the generator with configuration."""
self.config_path = config_path
self.client = None
self.historic_prompts = []
self.pool_prompts = []
self.prompt_template = ""
self.settings = {}
# Load configuration
self._load_config()
self._load_settings()
# Load data files
self._load_prompt_template()
self._load_historic_prompts()
self._load_pool_prompts()
def _load_config(self):
"""Load configuration from environment file."""
load_dotenv(self.config_path)
# Get API key
self.api_key = os.getenv("DEEPSEEK_API_KEY") or os.getenv("OPENAI_API_KEY")
if not self.api_key:
print("Error: No API key found in .env file")
print("Please add DEEPSEEK_API_KEY or OPENAI_API_KEY to your .env file")
sys.exit(1)
# Get API base URL (default to DeepSeek)
self.base_url = os.getenv("API_BASE_URL", "https://api.deepseek.com")
# Get model (default to deepseek-chat)
self.model = os.getenv("MODEL", "deepseek-chat")
# Initialize OpenAI client
self.client = OpenAI(
api_key=self.api_key,
base_url=self.base_url
)
def _load_settings(self):
"""Load settings from settings.cfg configuration file."""
config = configparser.ConfigParser()
# Set default values
self.settings = {
'min_length': 500,
'max_length': 1000,
'num_prompts': 6
}
try:
config.read('settings.cfg')
if 'prompts' in config:
prompts_section = config['prompts']
# Load min_length
if 'min_length' in prompts_section:
self.settings['min_length'] = int(prompts_section['min_length'])
# Load max_length
if 'max_length' in prompts_section:
self.settings['max_length'] = int(prompts_section['max_length'])
# Load num_prompts
if 'num_prompts' in prompts_section:
self.settings['num_prompts'] = int(prompts_section['num_prompts'])
except FileNotFoundError:
print("Warning: settings.cfg not found, using default values")
except ValueError as e:
print(f"Warning: Invalid value in settings.cfg: {e}, using default values")
except Exception as e:
print(f"Warning: Error reading settings.cfg: {e}, using default values")
def _load_prompt_template(self):
"""Load the prompt template from ds_prompt.txt and update with config values."""
try:
with open("ds_prompt.txt", "r") as f:
template = f.read()
# Replace hardcoded values with config values
template = template.replace(
"between 500 and 1000 characters",
f"between {self.settings['min_length']} and {self.settings['max_length']} characters"
)
# Replace the number of prompts (6) with config value
template = template.replace(
"Please generate 6 writing prompts",
f"Please generate {self.settings['num_prompts']} writing prompts"
)
self.prompt_template = template
except FileNotFoundError:
print("Error: ds_prompt.txt not found")
sys.exit(1)
def _load_historic_prompts(self):
"""Load historic prompts from JSON file."""
try:
with open("historic_prompts.json", "r") as f:
self.historic_prompts = json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
print("Warning: Starting with empty prompt history")
self.historic_prompts = []
def _save_historic_prompts(self):
"""Save historic prompts to JSON file (keeping only last 60)."""
# Keep only the last 60 prompts
if len(self.historic_prompts) > 60:
self.historic_prompts = self.historic_prompts[-60:]
with open("historic_prompts.json", "w") as f:
json.dump(self.historic_prompts, f, indent=2)
def _prepare_prompt(self) -> str:
"""Prepare the full prompt with historic context."""
if self.historic_prompts:
historic_context = json.dumps(self.historic_prompts, indent=2)
full_prompt = f"{self.prompt_template}\n\nPrevious prompts:\n{historic_context}"
else:
full_prompt = self.prompt_template
return full_prompt
def _parse_ai_response(self, response_content: str) -> List[str]:
"""Parse the AI response to extract new prompts."""
try:
# Try to parse as JSON
data = json.loads(response_content)
# Check if data is a list (new format)
if isinstance(data, list):
# Return the list of prompt strings directly
# Ensure we have the correct number of prompts
if len(data) >= self.settings['num_prompts']:
return data[:self.settings['num_prompts']]
else:
print(f"Warning: AI returned {len(data)} prompts, expected {self.settings['num_prompts']}")
return data
elif isinstance(data, dict):
# Fallback for old format: dictionary with newprompt0, newprompt1, etc.
print("Warning: AI returned dictionary format, expected list format")
new_prompts = []
for i in range(self.settings['num_prompts']):
key = f"newprompt{i}"
if key in data:
new_prompts.append(data[key])
return new_prompts
else:
print(f"Warning: AI returned unexpected data type: {type(data)}")
return []
except json.JSONDecodeError:
# If not valid JSON, try to extract prompts from text
print("Warning: AI response is not valid JSON, attempting to extract prompts...")
# Look for patterns in the text
lines = response_content.strip().split('\n')
new_prompts = []
for i, line in enumerate(lines[:self.settings['num_prompts']]):
line = line.strip()
if line and len(line) > 50:
new_prompts.append(line)
return new_prompts
def generate_prompts(self) -> List[str]:
"""Generate new journal prompts using AI."""
print("\nGenerating new journal prompts...")
# Prepare the prompt
full_prompt = self._prepare_prompt()
try:
# Call the AI API
print("Calling AI API...")
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": "You are a creative writing assistant that generates journal prompts. Always respond with valid JSON."},
{"role": "user", "content": full_prompt}
],
temperature=0.7,
max_tokens=2000
)
response_content = response.choices[0].message.content
except Exception as e:
print(f"Error calling AI API: {e}")
return []
# Parse the response
new_prompts = self._parse_ai_response(response_content)
if not new_prompts:
print("Error: Could not parse any prompts from AI response")
return []
# Note: Prompts are NOT added to historic_prompts here
# They will be added only when the user chooses one
return new_prompts
def display_prompts(self, prompts: List[Dict[str, str]]):
"""Display generated prompts in a simple format."""
print("\n" + "="*60)
print("✨ NEW JOURNAL PROMPTS GENERATED ✨")
print("="*60 + "\n")
for i, prompt_dict in enumerate(prompts, 1):
# Extract prompt text
prompt_key = list(prompt_dict.keys())[0]
prompt_text = prompt_dict[prompt_key]
print(f"Prompt #{i}:")
print("-" * 40)
print(prompt_text)
print("-" * 40 + "\n")
def show_history_stats(self):
"""Show statistics about prompt history."""
total_prompts = len(self.historic_prompts)
print("\nPrompt History Statistics:")
print("-" * 30)
print(f"Total prompts in history: {total_prompts}")
print(f"History capacity: 60 prompts")
print(f"Available slots: {max(0, 60 - total_prompts)}")
def save_prompt_to_file(self, prompt_dict: Dict[str, str], filename: str = None):
"""Save a prompt to a text file."""
prompt_key = list(prompt_dict.keys())[0]
prompt_text = prompt_dict[prompt_key]
if not filename:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"journal_prompt_{timestamp}.txt"
with open(filename, "w") as f:
f.write(f"Journal Prompt - {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write("="*50 + "\n\n")
f.write(prompt_text)
f.write("\n\n" + "="*50 + "\n")
f.write("Happy writing! ✍️\n")
print(f"Prompt saved to {filename}")
def main():
"""Main entry point for the simple script."""
parser = argparse.ArgumentParser(description="Generate journal prompts using AI (simple version)")
parser.add_argument(
"--stats", "-s",
action="store_true",
help="Show history statistics"
)
parser.add_argument(
"--save", "-S",
type=int,
help="Save a specific prompt number to file"
)
parser.add_argument(
"--config", "-c",
default=".env",
help="Path to configuration file (default: .env)"
)
args = parser.parse_args()
# Initialize generator
generator = SimplePromptGenerator(config_path=args.config)
if args.stats:
generator.show_history_stats()
else:
# Generate prompts
new_prompts = generator.generate_prompts()
if new_prompts:
generator.display_prompts(new_prompts)
# Save specific prompt if requested
if args.save:
prompt_num = args.save
if 1 <= prompt_num <= len(new_prompts):
generator.save_prompt_to_file(new_prompts[prompt_num - 1])
else:
print(f"Error: Prompt number must be between 1 and {len(new_prompts)}")
if __name__ == "__main__":
main()

View File

@@ -1,55 +0,0 @@
#!/usr/bin/env python3
"""
Test to demonstrate the fix for the AttributeError when API returns list instead of dict.
"""
import json
from generate_prompts import JournalPromptGenerator
def test_original_error_case():
"""Test the exact error case: API returns a list instead of a dict."""
print("Testing the original error case: API returns list instead of dict")
print("="*60)
# Create a mock generator
generator = JournalPromptGenerator()
# Simulate API returning a list (which could happen with null/malformed data)
list_response = json.dumps([]) # Empty list
print("\n1. Testing with empty list []:")
try:
result = generator._parse_ai_response(list_response)
print(f" Result: Successfully parsed {len(result)} prompts (no AttributeError)")
except AttributeError as e:
print(f" ERROR: AttributeError occurred: {e}")
except Exception as e:
print(f" Other error: {type(e).__name__}: {e}")
# Test with list containing dictionaries (another possible malformed response)
list_with_dicts = json.dumps([
{"some_key": "some value"},
{"another_key": "another value"}
])
print("\n2. Testing with list of dictionaries:")
try:
result = generator._parse_ai_response(list_with_dicts)
print(f" Result: Successfully parsed {len(result)} prompts (no AttributeError)")
except AttributeError as e:
print(f" ERROR: AttributeError occurred: {e}")
except Exception as e:
print(f" Other error: {type(e).__name__}: {e}")
# Test with None/null data (worst case)
print("\n3. Testing with None/null data (simulated):")
# We can't directly test None since json.loads would fail, but our code
# handles the case where data might be None after parsing
print("\n" + "="*60)
print("Test complete! The fix prevents AttributeError for list responses.")
if __name__ == "__main__":
test_original_error_case()

View File

@@ -1,91 +0,0 @@
#!/usr/bin/env python3
"""
Test the new format where AI returns a list and keys are generated locally.
"""
import json
import sys
import os
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from generate_prompts import JournalPromptGenerator
def test_new_format():
"""Test the new format where AI returns a list and keys are generated locally."""
print("Testing new format: AI returns list, keys generated locally")
print("="*60)
# Create a mock generator
generator = JournalPromptGenerator(config_path=".env")
# Create a mock AI response in the new list format
mock_ai_response = [
"Write about a childhood memory that still makes you smile.",
"Describe your perfect day from start to finish.",
"What is something you've been putting off and why?",
"Imagine you could have a conversation with any historical figure.",
"Write a letter to your future self one year from now.",
"Describe a place that feels like home to you."
]
# Convert to JSON string
json_response = json.dumps(mock_ai_response)
print("\n1. Testing _parse_ai_response with list format:")
result = generator._parse_ai_response(json_response)
print(f" Result type: {type(result)}")
print(f" Number of prompts: {len(result)}")
print(f" First prompt: {result[0][:50]}...")
# Verify it's a list of strings
assert isinstance(result, list), "Result should be a list"
assert all(isinstance(prompt, str) for prompt in result), "All items should be strings"
print("\n2. Testing add_prompts_to_pool with list of strings:")
# Get initial pool size
initial_pool_size = len(generator.pool_prompts)
print(f" Initial pool size: {initial_pool_size}")
# Add prompts to pool
generator.add_prompts_to_pool(result)
# Check new pool size
new_pool_size = len(generator.pool_prompts)
print(f" New pool size: {new_pool_size}")
print(f" Added {new_pool_size - initial_pool_size} prompts")
# Check that prompts in pool have keys
print(f"\n3. Checking that prompts in pool have generated keys:")
for i, prompt_dict in enumerate(generator.pool_prompts[-len(result):]):
prompt_key = list(prompt_dict.keys())[0]
prompt_text = prompt_dict[prompt_key]
print(f" Prompt {i+1}: Key='{prompt_key}', Text='{prompt_text[:30]}...'")
assert prompt_key.startswith("poolprompt"), f"Key should start with 'poolprompt', got '{prompt_key}'"
print("\n4. Testing draw_prompts_from_pool:")
drawn_prompts = generator.draw_prompts_from_pool(count=2)
print(f" Drawn {len(drawn_prompts)} prompts from pool")
print(f" Pool size after drawing: {len(generator.pool_prompts)}")
# Check drawn prompts have keys
for i, prompt_dict in enumerate(drawn_prompts):
prompt_key = list(prompt_dict.keys())[0]
prompt_text = prompt_dict[prompt_key]
print(f" Drawn prompt {i+1}: Key='{prompt_key}', Text='{prompt_text[:30]}...'")
print("\n" + "="*60)
print("✅ All tests passed! New format works correctly.")
print("\nSummary:")
print("- AI returns prompts as a JSON list (no keys)")
print("- _parse_ai_response returns List[str]")
print("- add_prompts_to_pool generates keys locally (poolprompt000, poolprompt001, etc.)")
print("- draw_prompts_from_pool returns List[Dict[str, str]] with generated keys")
return True
if __name__ == "__main__":
test_new_format()

230
test_parsing.py Normal file
View File

@@ -0,0 +1,230 @@
#!/usr/bin/env python3
"""
Consolidated test file for parsing AI responses and format handling.
Combines tests from:
- test_final_fix.py (AttributeError fix for list responses)
- test_new_format.py (new list format with locally generated keys)
- test_valid_response.py (valid JSON response handling)
"""
import json
import sys
import os
# Add the current directory to the Python path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from generate_prompts import JournalPromptGenerator
def test_attribute_error_fix():
"""Test the fix for AttributeError when API returns list instead of dict."""
print("\n=== Test: AttributeError fix for list responses ===")
# Create a mock generator
generator = JournalPromptGenerator()
# Test with empty list []
list_response = json.dumps([]) # Empty list
print("\n1. Testing with empty list []:")
try:
result = generator._parse_ai_response(list_response)
print(f" Result: Successfully parsed {len(result)} prompts (no AttributeError)")
except AttributeError as e:
print(f" ERROR: AttributeError occurred: {e}")
return False
except Exception as e:
print(f" Other error: {type(e).__name__}: {e}")
return False
# Test with list containing dictionaries
list_with_dicts = json.dumps([
{"some_key": "some value"},
{"another_key": "another value"}
])
print("\n2. Testing with list of dictionaries:")
try:
result = generator._parse_ai_response(list_with_dicts)
print(f" Result: Successfully parsed {len(result)} prompts (no AttributeError)")
except AttributeError as e:
print(f" ERROR: AttributeError occurred: {e}")
return False
except Exception as e:
print(f" Other error: {type(e).__name__}: {e}")
return False
print("\n✅ AttributeError fix tests passed!")
return True
def test_new_list_format():
"""Test the new format where AI returns a list and keys are generated locally."""
print("\n=== Test: New list format with locally generated keys ===")
# Create a mock generator
generator = JournalPromptGenerator()
# Create a mock AI response in the new list format
mock_ai_response = [
"Write about a childhood memory that still makes you smile.",
"Describe your perfect day from start to finish.",
"What is something you've been putting off and why?",
"Imagine you could have a conversation with any historical figure.",
"Write a letter to your future self one year from now.",
"Describe a place that feels like home to you."
]
# Convert to JSON string
json_response = json.dumps(mock_ai_response)
print("\n1. Testing _parse_ai_response with list format:")
result = generator._parse_ai_response(json_response)
print(f" Result type: {type(result)}")
print(f" Number of prompts: {len(result)}")
print(f" First prompt: {result[0][:50]}...")
# Verify it's a list of strings
assert isinstance(result, list), "Result should be a list"
assert all(isinstance(prompt, str) for prompt in result), "All items should be strings"
print("\n2. Testing add_prompts_to_pool with list of strings:")
# Get initial pool size
initial_pool_size = len(generator.pool_prompts)
print(f" Initial pool size: {initial_pool_size}")
# Add prompts to pool
generator.add_prompts_to_pool(result)
# Check new pool size
new_pool_size = len(generator.pool_prompts)
print(f" New pool size: {new_pool_size}")
print(f" Added {new_pool_size - initial_pool_size} prompts")
print("\n✅ New list format tests passed!")
return True
def test_valid_json_responses():
"""Test with valid JSON responses in various formats."""
print("\n=== Test: Valid JSON response handling ===")
# Create a mock generator
generator = JournalPromptGenerator()
# Create a valid response with 4 prompts as a list (new format)
valid_response = [
"Write about a time when you felt truly at peace.",
"Describe your ideal morning routine in detail.",
"What are three things you're grateful for today?",
"Reflect on a recent challenge and what you learned from it."
]
# Convert to JSON string
json_response = json.dumps(valid_response)
print("\n1. Testing with valid JSON response (list format):")
result = generator._parse_ai_response(json_response)
print(f" Number of prompts extracted: {len(result)}")
print(f" Type of result: {type(result)}")
for i, prompt_text in enumerate(result):
print(f" Prompt {i+1}: {prompt_text[:50]}...")
# Test with backticks
print("\n2. Testing with valid JSON response with backticks:")
backticks_response = f"```json\n{json_response}\n```"
result = generator._parse_ai_response(backticks_response)
print(f" Number of prompts extracted: {len(result)}")
# Test with "json" prefix
print("\n3. Testing with valid JSON response with 'json' prefix:")
json_prefix_response = f"json\n{json_response}"
result = generator._parse_ai_response(json_prefix_response)
print(f" Number of prompts extracted: {len(result)}")
# Test fallback for old dictionary format
print("\n4. Testing fallback for old dictionary format:")
old_format_response = {
"newprompt0": "Write about a time when you felt truly at peace.",
"newprompt1": "Describe your ideal morning routine in detail.",
"newprompt2": "What are three things you're grateful for today?",
"newprompt3": "Reflect on a recent challenge and what you learned from it."
}
json_old_response = json.dumps(old_format_response)
result = generator._parse_ai_response(json_old_response)
print(f" Number of prompts extracted: {len(result)}")
print("\n✅ Valid JSON response tests passed!")
return True
def test_clean_ai_response():
"""Test the _clean_ai_response method."""
print("\n=== Test: _clean_ai_response method ===")
generator = JournalPromptGenerator()
# Test cases
test_cases = [
("```json\n[1, 2, 3]\n```", "[1, 2, 3]"),
("```\n[1, 2, 3]\n```", "[1, 2, 3]"),
("json\n[1, 2, 3]", "[1, 2, 3]"),
("JSON\n[1, 2, 3]", "[1, 2, 3]"),
(" [1, 2, 3] ", "[1, 2, 3]"),
("```json\n{\"a\": 1}\n```", "{\"a\": 1}"),
]
all_passed = True
for i, (input_text, expected) in enumerate(test_cases):
cleaned = generator._clean_ai_response(input_text)
if cleaned == expected:
print(f" Test {i+1} passed: '{input_text[:20]}...' -> '{cleaned}'")
else:
print(f" Test {i+1} FAILED: '{input_text[:20]}...' -> '{cleaned}' (expected: '{expected}')")
all_passed = False
if all_passed:
print("\n✅ _clean_ai_response tests passed!")
return True
else:
print("\n❌ _clean_ai_response tests failed!")
return False
def main():
"""Run all parsing tests."""
print("=" * 60)
print("Running Consolidated Parsing Tests")
print("=" * 60)
all_passed = True
# Run all tests
if not test_attribute_error_fix():
all_passed = False
if not test_new_list_format():
all_passed = False
if not test_valid_json_responses():
all_passed = False
if not test_clean_ai_response():
all_passed = False
print("\n" + "=" * 60)
if all_passed:
print("✅ ALL PARSING TESTS PASSED!")
else:
print("❌ SOME TESTS FAILED!")
print("=" * 60)
return all_passed
if __name__ == "__main__":
success = main()
sys.exit(0 if success else 1)

View File

@@ -201,7 +201,7 @@ def test_python_scripts():
"""Test that Python scripts are syntactically valid."""
print("\nTesting Python scripts...")
scripts_to_test = ["generate_prompts.py", "simple_generate.py"]
scripts_to_test = ["generate_prompts.py"]
all_valid = True
for script in scripts_to_test:

View File

@@ -1,65 +0,0 @@
#!/usr/bin/env python3
"""
Test the error handling with a valid response.
"""
import sys
import os
import json
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from generate_prompts import JournalPromptGenerator
def test_valid_response():
"""Test with a valid JSON response."""
# Create a mock generator
generator = JournalPromptGenerator(config_path=".env")
# Create a valid response with 4 prompts as a list (new format)
valid_response = [
"Write about a time when you felt truly at peace.",
"Describe your ideal morning routine in detail.",
"What are three things you're grateful for today?",
"Reflect on a recent challenge and what you learned from it."
]
# Convert to JSON string
json_response = json.dumps(valid_response)
print("\n=== Test: Valid JSON response (list format) ===")
result = generator._parse_ai_response(json_response)
print(f"Number of prompts extracted: {len(result)}")
print(f"Type of result: {type(result)}")
for i, prompt_text in enumerate(result):
print(f"Prompt {i+1}: {prompt_text[:50]}...")
# Test with backticks
print("\n=== Test: Valid JSON response with backticks ===")
backticks_response = f"```json\n{json_response}\n```"
result = generator._parse_ai_response(backticks_response)
print(f"Number of prompts extracted: {len(result)}")
# Test with "json" prefix
print("\n=== Test: Valid JSON response with 'json' prefix ===")
json_prefix_response = f"json\n{json_response}"
result = generator._parse_ai_response(json_prefix_response)
print(f"Number of prompts extracted: {len(result)}")
# Test fallback for old dictionary format
print("\n=== Test: Fallback for old dictionary format ===")
old_format_response = {
"newprompt0": "Write about a time when you felt truly at peace.",
"newprompt1": "Describe your ideal morning routine in detail.",
"newprompt2": "What are three things you're grateful for today?",
"newprompt3": "Reflect on a recent challenge and what you learned from it."
}
json_old_response = json.dumps(old_format_response)
result = generator._parse_ai_response(json_old_response)
print(f"Number of prompts extracted: {len(result)}")
if __name__ == "__main__":
test_valid_response()