## Summary * **What is the goal of this PR?** Replace simple threshold-based grayscale quantization with ordered dithering using a 4x4 Bayer matrix. This eliminates color banding artifacts and produces smoother gradients on e-ink display. * **What changes are included?** - Add 4x4 Bayer dithering matrix for 16-level threshold patterns - Modify `grayscaleTo2Bit()` function to accept pixel coordinates and apply position-based dithering - Replace simple `grayscale >> 6` threshold with ordered dithering algorithm that produces smoother gradients ## Additional Context * Bayer matrix approach: The 4x4 Bayer matrix creates a repeating pattern that distributes quantization error spatially, effectively simulating 16 levels of gray using only 4 actual color levels (black, dark gray, light gray, white). * Cache invalidation: Existing cached `cover.bmp` files will need to be deleted to see the improved rendering, as the converter only runs when the cache is missing.
373 lines
12 KiB
C++
373 lines
12 KiB
C++
#include "Bitmap.h"
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
|
|
// ============================================================================
|
|
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
|
|
// ============================================================================
|
|
// Note: For cover images, dithering is done in JpegToBmpConverter.cpp
|
|
// This file handles BMP reading - use simple quantization to avoid double-dithering
|
|
constexpr bool USE_FLOYD_STEINBERG = false; // Disabled - dithering done at JPEG conversion
|
|
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
|
|
// Brightness adjustments:
|
|
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
|
|
constexpr int BRIGHTNESS_BOOST = 20; // Brightness offset (0-50), only if USE_BRIGHTNESS=true
|
|
constexpr bool GAMMA_CORRECTION = false; // Gamma curve, only if USE_BRIGHTNESS=true
|
|
// ============================================================================
|
|
|
|
// Integer approximation of gamma correction (brightens midtones)
|
|
static inline int applyGamma(int gray) {
|
|
if (!GAMMA_CORRECTION) return gray;
|
|
const int product = gray * 255;
|
|
int x = gray;
|
|
if (x > 0) {
|
|
x = (x + product / x) >> 1;
|
|
x = (x + product / x) >> 1;
|
|
}
|
|
return x > 255 ? 255 : x;
|
|
}
|
|
|
|
// Simple quantization without dithering - just divide into 4 levels
|
|
static inline uint8_t quantizeSimple(int gray) {
|
|
if (USE_BRIGHTNESS) {
|
|
gray += BRIGHTNESS_BOOST;
|
|
if (gray > 255) gray = 255;
|
|
gray = applyGamma(gray);
|
|
}
|
|
return static_cast<uint8_t>(gray >> 6);
|
|
}
|
|
|
|
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
|
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
|
if (USE_BRIGHTNESS) {
|
|
gray += BRIGHTNESS_BOOST;
|
|
if (gray > 255) gray = 255;
|
|
gray = applyGamma(gray);
|
|
}
|
|
|
|
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
|
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
|
const int threshold = static_cast<int>(hash >> 24);
|
|
|
|
const int scaled = gray * 3;
|
|
if (scaled < 255) {
|
|
return (scaled + threshold >= 255) ? 1 : 0;
|
|
} else if (scaled < 510) {
|
|
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
|
} else {
|
|
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
|
}
|
|
}
|
|
|
|
// Main quantization function
|
|
static inline uint8_t quantize(int gray, int x, int y) {
|
|
if (USE_NOISE_DITHERING) {
|
|
return quantizeNoise(gray, x, y);
|
|
} else {
|
|
return quantizeSimple(gray);
|
|
}
|
|
}
|
|
|
|
// Floyd-Steinberg quantization with error diffusion and serpentine scanning
|
|
// Returns 2-bit value (0-3) and updates error buffers
|
|
static inline uint8_t quantizeFloydSteinberg(int gray, int x, int width, int16_t* errorCurRow, int16_t* errorNextRow,
|
|
bool reverseDir) {
|
|
// Add accumulated error to this pixel
|
|
int adjusted = gray + errorCurRow[x + 1];
|
|
|
|
// Clamp to valid range
|
|
if (adjusted < 0) adjusted = 0;
|
|
if (adjusted > 255) adjusted = 255;
|
|
|
|
// Quantize to 4 levels (0, 85, 170, 255)
|
|
uint8_t quantized;
|
|
int quantizedValue;
|
|
if (adjusted < 43) {
|
|
quantized = 0;
|
|
quantizedValue = 0;
|
|
} else if (adjusted < 128) {
|
|
quantized = 1;
|
|
quantizedValue = 85;
|
|
} else if (adjusted < 213) {
|
|
quantized = 2;
|
|
quantizedValue = 170;
|
|
} else {
|
|
quantized = 3;
|
|
quantizedValue = 255;
|
|
}
|
|
|
|
// Calculate error
|
|
int error = adjusted - quantizedValue;
|
|
|
|
// Distribute error to neighbors (serpentine: direction-aware)
|
|
if (!reverseDir) {
|
|
// Left to right
|
|
errorCurRow[x + 2] += (error * 7) >> 4; // Right: 7/16
|
|
errorNextRow[x] += (error * 3) >> 4; // Bottom-left: 3/16
|
|
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
|
|
errorNextRow[x + 2] += (error) >> 4; // Bottom-right: 1/16
|
|
} else {
|
|
// Right to left (mirrored)
|
|
errorCurRow[x] += (error * 7) >> 4; // Left: 7/16
|
|
errorNextRow[x + 2] += (error * 3) >> 4; // Bottom-right: 3/16
|
|
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
|
|
errorNextRow[x] += (error) >> 4; // Bottom-left: 1/16
|
|
}
|
|
|
|
return quantized;
|
|
}
|
|
|
|
Bitmap::~Bitmap() {
|
|
delete[] errorCurRow;
|
|
delete[] errorNextRow;
|
|
}
|
|
|
|
uint16_t Bitmap::readLE16(File& f) {
|
|
const int c0 = f.read();
|
|
const int c1 = f.read();
|
|
const auto b0 = static_cast<uint8_t>(c0 < 0 ? 0 : c0);
|
|
const auto b1 = static_cast<uint8_t>(c1 < 0 ? 0 : c1);
|
|
return static_cast<uint16_t>(b0) | (static_cast<uint16_t>(b1) << 8);
|
|
}
|
|
|
|
uint32_t Bitmap::readLE32(File& f) {
|
|
const int c0 = f.read();
|
|
const int c1 = f.read();
|
|
const int c2 = f.read();
|
|
const int c3 = f.read();
|
|
|
|
const auto b0 = static_cast<uint8_t>(c0 < 0 ? 0 : c0);
|
|
const auto b1 = static_cast<uint8_t>(c1 < 0 ? 0 : c1);
|
|
const auto b2 = static_cast<uint8_t>(c2 < 0 ? 0 : c2);
|
|
const auto b3 = static_cast<uint8_t>(c3 < 0 ? 0 : c3);
|
|
|
|
return static_cast<uint32_t>(b0) | (static_cast<uint32_t>(b1) << 8) | (static_cast<uint32_t>(b2) << 16) |
|
|
(static_cast<uint32_t>(b3) << 24);
|
|
}
|
|
|
|
const char* Bitmap::errorToString(BmpReaderError err) {
|
|
switch (err) {
|
|
case BmpReaderError::Ok:
|
|
return "Ok";
|
|
case BmpReaderError::FileInvalid:
|
|
return "FileInvalid";
|
|
case BmpReaderError::SeekStartFailed:
|
|
return "SeekStartFailed";
|
|
case BmpReaderError::NotBMP:
|
|
return "NotBMP (missing 'BM')";
|
|
case BmpReaderError::DIBTooSmall:
|
|
return "DIBTooSmall (<40 bytes)";
|
|
case BmpReaderError::BadPlanes:
|
|
return "BadPlanes (!= 1)";
|
|
case BmpReaderError::UnsupportedBpp:
|
|
return "UnsupportedBpp (expected 1, 2, 8, 24, or 32)";
|
|
case BmpReaderError::UnsupportedCompression:
|
|
return "UnsupportedCompression (expected BI_RGB or BI_BITFIELDS for 32bpp)";
|
|
case BmpReaderError::BadDimensions:
|
|
return "BadDimensions";
|
|
case BmpReaderError::ImageTooLarge:
|
|
return "ImageTooLarge (max 2048x3072)";
|
|
case BmpReaderError::PaletteTooLarge:
|
|
return "PaletteTooLarge";
|
|
|
|
case BmpReaderError::SeekPixelDataFailed:
|
|
return "SeekPixelDataFailed";
|
|
case BmpReaderError::BufferTooSmall:
|
|
return "BufferTooSmall";
|
|
|
|
case BmpReaderError::OomRowBuffer:
|
|
return "OomRowBuffer";
|
|
case BmpReaderError::ShortReadRow:
|
|
return "ShortReadRow";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
|
|
BmpReaderError Bitmap::parseHeaders() {
|
|
if (!file) return BmpReaderError::FileInvalid;
|
|
if (!file.seek(0)) return BmpReaderError::SeekStartFailed;
|
|
|
|
// --- BMP FILE HEADER ---
|
|
const uint16_t bfType = readLE16(file);
|
|
if (bfType != 0x4D42) return BmpReaderError::NotBMP;
|
|
|
|
file.seek(8, SeekCur);
|
|
bfOffBits = readLE32(file);
|
|
|
|
// --- DIB HEADER ---
|
|
const uint32_t biSize = readLE32(file);
|
|
if (biSize < 40) return BmpReaderError::DIBTooSmall;
|
|
|
|
width = static_cast<int32_t>(readLE32(file));
|
|
const auto rawHeight = static_cast<int32_t>(readLE32(file));
|
|
topDown = rawHeight < 0;
|
|
height = topDown ? -rawHeight : rawHeight;
|
|
|
|
const uint16_t planes = readLE16(file);
|
|
bpp = readLE16(file);
|
|
const uint32_t comp = readLE32(file);
|
|
const bool validBpp = bpp == 1 || bpp == 2 || bpp == 8 || bpp == 24 || bpp == 32;
|
|
|
|
if (planes != 1) return BmpReaderError::BadPlanes;
|
|
if (!validBpp) return BmpReaderError::UnsupportedBpp;
|
|
// Allow BI_RGB (0) for all, and BI_BITFIELDS (3) for 32bpp which is common for BGRA masks.
|
|
if (!(comp == 0 || (bpp == 32 && comp == 3))) return BmpReaderError::UnsupportedCompression;
|
|
|
|
file.seek(12, SeekCur); // biSizeImage, biXPelsPerMeter, biYPelsPerMeter
|
|
const uint32_t colorsUsed = readLE32(file);
|
|
if (colorsUsed > 256u) return BmpReaderError::PaletteTooLarge;
|
|
file.seek(4, SeekCur); // biClrImportant
|
|
|
|
if (width <= 0 || height <= 0) return BmpReaderError::BadDimensions;
|
|
|
|
// Safety limits to prevent memory issues on ESP32
|
|
constexpr int MAX_IMAGE_WIDTH = 2048;
|
|
constexpr int MAX_IMAGE_HEIGHT = 3072;
|
|
if (width > MAX_IMAGE_WIDTH || height > MAX_IMAGE_HEIGHT) {
|
|
return BmpReaderError::ImageTooLarge;
|
|
}
|
|
|
|
// Pre-calculate Row Bytes to avoid doing this every row
|
|
rowBytes = (width * bpp + 31) / 32 * 4;
|
|
|
|
for (int i = 0; i < 256; i++) paletteLum[i] = static_cast<uint8_t>(i);
|
|
if (colorsUsed > 0) {
|
|
for (uint32_t i = 0; i < colorsUsed; i++) {
|
|
uint8_t rgb[4];
|
|
file.read(rgb, 4); // Read B, G, R, Reserved in one go
|
|
paletteLum[i] = (77u * rgb[2] + 150u * rgb[1] + 29u * rgb[0]) >> 8;
|
|
}
|
|
}
|
|
|
|
if (!file.seek(bfOffBits)) {
|
|
return BmpReaderError::SeekPixelDataFailed;
|
|
}
|
|
|
|
// Allocate Floyd-Steinberg error buffers if enabled
|
|
if (USE_FLOYD_STEINBERG) {
|
|
delete[] errorCurRow;
|
|
delete[] errorNextRow;
|
|
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
|
|
errorNextRow = new int16_t[width + 2]();
|
|
lastRowY = -1;
|
|
}
|
|
|
|
return BmpReaderError::Ok;
|
|
}
|
|
|
|
// packed 2bpp output, 0 = black, 1 = dark gray, 2 = light gray, 3 = white
|
|
BmpReaderError Bitmap::readRow(uint8_t* data, uint8_t* rowBuffer, int rowY) const {
|
|
// Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes'
|
|
if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow;
|
|
|
|
// Handle Floyd-Steinberg error buffer progression
|
|
const bool useFS = USE_FLOYD_STEINBERG && errorCurRow && errorNextRow;
|
|
if (useFS) {
|
|
// Check if we need to advance to next row (or reset if jumping)
|
|
if (rowY != lastRowY + 1 && rowY != 0) {
|
|
// Non-sequential row access - reset error buffers
|
|
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
|
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
|
} else if (rowY > 0) {
|
|
// Sequential access - swap buffers
|
|
int16_t* temp = errorCurRow;
|
|
errorCurRow = errorNextRow;
|
|
errorNextRow = temp;
|
|
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
|
}
|
|
lastRowY = rowY;
|
|
}
|
|
|
|
uint8_t* outPtr = data;
|
|
uint8_t currentOutByte = 0;
|
|
int bitShift = 6;
|
|
int currentX = 0;
|
|
|
|
// Helper lambda to pack 2bpp color into the output stream
|
|
auto packPixel = [&](const uint8_t lum) {
|
|
uint8_t color;
|
|
if (useFS) {
|
|
// Floyd-Steinberg error diffusion
|
|
color = quantizeFloydSteinberg(lum, currentX, width, errorCurRow, errorNextRow, false);
|
|
} else {
|
|
// Simple quantization or noise dithering
|
|
color = quantize(lum, currentX, rowY);
|
|
}
|
|
currentOutByte |= (color << bitShift);
|
|
if (bitShift == 0) {
|
|
*outPtr++ = currentOutByte;
|
|
currentOutByte = 0;
|
|
bitShift = 6;
|
|
} else {
|
|
bitShift -= 2;
|
|
}
|
|
currentX++;
|
|
};
|
|
|
|
uint8_t lum;
|
|
|
|
switch (bpp) {
|
|
case 32: {
|
|
const uint8_t* p = rowBuffer;
|
|
for (int x = 0; x < width; x++) {
|
|
lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8;
|
|
packPixel(lum);
|
|
p += 4;
|
|
}
|
|
break;
|
|
}
|
|
case 24: {
|
|
const uint8_t* p = rowBuffer;
|
|
for (int x = 0; x < width; x++) {
|
|
lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8;
|
|
packPixel(lum);
|
|
p += 3;
|
|
}
|
|
break;
|
|
}
|
|
case 8: {
|
|
for (int x = 0; x < width; x++) {
|
|
packPixel(paletteLum[rowBuffer[x]]);
|
|
}
|
|
break;
|
|
}
|
|
case 2: {
|
|
for (int x = 0; x < width; x++) {
|
|
lum = paletteLum[(rowBuffer[x >> 2] >> (6 - ((x & 3) * 2))) & 0x03];
|
|
packPixel(lum);
|
|
}
|
|
break;
|
|
}
|
|
case 1: {
|
|
for (int x = 0; x < width; x++) {
|
|
lum = (rowBuffer[x >> 3] & (0x80 >> (x & 7))) ? 0xFF : 0x00;
|
|
packPixel(lum);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
return BmpReaderError::UnsupportedBpp;
|
|
}
|
|
|
|
// Flush remaining bits if width is not a multiple of 4
|
|
if (bitShift != 6) *outPtr = currentOutByte;
|
|
|
|
return BmpReaderError::Ok;
|
|
}
|
|
|
|
BmpReaderError Bitmap::rewindToData() const {
|
|
if (!file.seek(bfOffBits)) {
|
|
return BmpReaderError::SeekPixelDataFailed;
|
|
}
|
|
|
|
// Reset Floyd-Steinberg error buffers when rewinding
|
|
if (USE_FLOYD_STEINBERG && errorCurRow && errorNextRow) {
|
|
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
|
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
|
lastRowY = -1;
|
|
}
|
|
|
|
return BmpReaderError::Ok;
|
|
}
|