Fix BMP rendering gamma/brightness (#302)
1. Refactor Bitmap.cpp/h to expose the options for FloydSteinberg and brightness/gamma correction at runtime 2. Fine-tune the thresholds for Floyd Steiberg and simple quantization to better match the display's colors Turns out that 2 is enough to make the images render properly, so the brightness boost and gamma adjustment doesn't seem necessary currently (at least for my test image).
This commit is contained in:
@@ -8,119 +8,15 @@
|
||||
// ============================================================================
|
||||
// Note: For cover images, dithering is done in JpegToBmpConverter.cpp
|
||||
// This file handles BMP reading - use simple quantization to avoid double-dithering
|
||||
constexpr bool USE_FLOYD_STEINBERG = false; // Disabled - dithering done at JPEG conversion
|
||||
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
|
||||
// Brightness adjustments:
|
||||
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
|
||||
constexpr int BRIGHTNESS_BOOST = 20; // Brightness offset (0-50), only if USE_BRIGHTNESS=true
|
||||
constexpr bool GAMMA_CORRECTION = false; // Gamma curve, only if USE_BRIGHTNESS=true
|
||||
constexpr bool USE_ATKINSON = true; // Use Atkinson dithering instead of Floyd-Steinberg
|
||||
// ============================================================================
|
||||
|
||||
// Integer approximation of gamma correction (brightens midtones)
|
||||
static inline int applyGamma(int gray) {
|
||||
if (!GAMMA_CORRECTION) return gray;
|
||||
const int product = gray * 255;
|
||||
int x = gray;
|
||||
if (x > 0) {
|
||||
x = (x + product / x) >> 1;
|
||||
x = (x + product / x) >> 1;
|
||||
}
|
||||
return x > 255 ? 255 : x;
|
||||
}
|
||||
|
||||
// Simple quantization without dithering - just divide into 4 levels
|
||||
static inline uint8_t quantizeSimple(int gray) {
|
||||
if (USE_BRIGHTNESS) {
|
||||
gray += BRIGHTNESS_BOOST;
|
||||
if (gray > 255) gray = 255;
|
||||
gray = applyGamma(gray);
|
||||
}
|
||||
return static_cast<uint8_t>(gray >> 6);
|
||||
}
|
||||
|
||||
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
||||
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
||||
if (USE_BRIGHTNESS) {
|
||||
gray += BRIGHTNESS_BOOST;
|
||||
if (gray > 255) gray = 255;
|
||||
gray = applyGamma(gray);
|
||||
}
|
||||
|
||||
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
||||
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
||||
const int threshold = static_cast<int>(hash >> 24);
|
||||
|
||||
const int scaled = gray * 3;
|
||||
if (scaled < 255) {
|
||||
return (scaled + threshold >= 255) ? 1 : 0;
|
||||
} else if (scaled < 510) {
|
||||
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
||||
} else {
|
||||
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Main quantization function
|
||||
static inline uint8_t quantize(int gray, int x, int y) {
|
||||
if (USE_NOISE_DITHERING) {
|
||||
return quantizeNoise(gray, x, y);
|
||||
} else {
|
||||
return quantizeSimple(gray);
|
||||
}
|
||||
}
|
||||
|
||||
// Floyd-Steinberg quantization with error diffusion and serpentine scanning
|
||||
// Returns 2-bit value (0-3) and updates error buffers
|
||||
static inline uint8_t quantizeFloydSteinberg(int gray, int x, int width, int16_t* errorCurRow, int16_t* errorNextRow,
|
||||
bool reverseDir) {
|
||||
// Add accumulated error to this pixel
|
||||
int adjusted = gray + errorCurRow[x + 1];
|
||||
|
||||
// Clamp to valid range
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
|
||||
// Quantize to 4 levels (0, 85, 170, 255)
|
||||
uint8_t quantized;
|
||||
int quantizedValue;
|
||||
if (adjusted < 43) {
|
||||
quantized = 0;
|
||||
quantizedValue = 0;
|
||||
} else if (adjusted < 128) {
|
||||
quantized = 1;
|
||||
quantizedValue = 85;
|
||||
} else if (adjusted < 213) {
|
||||
quantized = 2;
|
||||
quantizedValue = 170;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 255;
|
||||
}
|
||||
|
||||
// Calculate error
|
||||
int error = adjusted - quantizedValue;
|
||||
|
||||
// Distribute error to neighbors (serpentine: direction-aware)
|
||||
if (!reverseDir) {
|
||||
// Left to right
|
||||
errorCurRow[x + 2] += (error * 7) >> 4; // Right: 7/16
|
||||
errorNextRow[x] += (error * 3) >> 4; // Bottom-left: 3/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
|
||||
errorNextRow[x + 2] += (error) >> 4; // Bottom-right: 1/16
|
||||
} else {
|
||||
// Right to left (mirrored)
|
||||
errorCurRow[x] += (error * 7) >> 4; // Left: 7/16
|
||||
errorNextRow[x + 2] += (error * 3) >> 4; // Bottom-right: 3/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16
|
||||
errorNextRow[x] += (error) >> 4; // Bottom-left: 1/16
|
||||
}
|
||||
|
||||
return quantized;
|
||||
}
|
||||
|
||||
Bitmap::~Bitmap() {
|
||||
delete[] errorCurRow;
|
||||
delete[] errorNextRow;
|
||||
|
||||
delete atkinsonDitherer;
|
||||
delete fsDitherer;
|
||||
}
|
||||
|
||||
uint16_t Bitmap::readLE16(FsFile& f) {
|
||||
@@ -244,13 +140,14 @@ BmpReaderError Bitmap::parseHeaders() {
|
||||
return BmpReaderError::SeekPixelDataFailed;
|
||||
}
|
||||
|
||||
// Allocate Floyd-Steinberg error buffers if enabled
|
||||
if (USE_FLOYD_STEINBERG) {
|
||||
delete[] errorCurRow;
|
||||
delete[] errorNextRow;
|
||||
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
|
||||
errorNextRow = new int16_t[width + 2]();
|
||||
prevRowY = -1;
|
||||
// Create ditherer if enabled (only for 2-bit output)
|
||||
// Use OUTPUT dimensions for dithering (after prescaling)
|
||||
if (bpp > 2 && dithering) {
|
||||
if (USE_ATKINSON) {
|
||||
atkinsonDitherer = new AtkinsonDitherer(width);
|
||||
} else {
|
||||
fsDitherer = new FloydSteinbergDitherer(width);
|
||||
}
|
||||
}
|
||||
|
||||
return BmpReaderError::Ok;
|
||||
@@ -261,17 +158,6 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
|
||||
// Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes'
|
||||
if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow;
|
||||
|
||||
// Handle Floyd-Steinberg error buffer progression
|
||||
const bool useFS = USE_FLOYD_STEINBERG && errorCurRow && errorNextRow;
|
||||
if (useFS) {
|
||||
if (prevRowY != -1) {
|
||||
// Sequential access - swap buffers
|
||||
int16_t* temp = errorCurRow;
|
||||
errorCurRow = errorNextRow;
|
||||
errorNextRow = temp;
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
}
|
||||
}
|
||||
prevRowY += 1;
|
||||
|
||||
uint8_t* outPtr = data;
|
||||
@@ -282,12 +168,18 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
|
||||
// Helper lambda to pack 2bpp color into the output stream
|
||||
auto packPixel = [&](const uint8_t lum) {
|
||||
uint8_t color;
|
||||
if (useFS) {
|
||||
// Floyd-Steinberg error diffusion
|
||||
color = quantizeFloydSteinberg(lum, currentX, width, errorCurRow, errorNextRow, false);
|
||||
if (atkinsonDitherer) {
|
||||
color = atkinsonDitherer->processPixel(adjustPixel(lum), currentX);
|
||||
} else if (fsDitherer) {
|
||||
color = fsDitherer->processPixel(adjustPixel(lum), currentX);
|
||||
} else {
|
||||
// Simple quantization or noise dithering
|
||||
color = quantize(lum, currentX, prevRowY);
|
||||
if (bpp > 2) {
|
||||
// Simple quantization or noise dithering
|
||||
color = quantize(adjustPixel(lum), currentX, prevRowY);
|
||||
} else {
|
||||
// do not quantize 2bpp image
|
||||
color = static_cast<uint8_t>(lum >> 6);
|
||||
}
|
||||
}
|
||||
currentOutByte |= (color << bitShift);
|
||||
if (bitShift == 0) {
|
||||
@@ -345,6 +237,11 @@ BmpReaderError Bitmap::readNextRow(uint8_t* data, uint8_t* rowBuffer) const {
|
||||
return BmpReaderError::UnsupportedBpp;
|
||||
}
|
||||
|
||||
if (atkinsonDitherer)
|
||||
atkinsonDitherer->nextRow();
|
||||
else if (fsDitherer)
|
||||
fsDitherer->nextRow();
|
||||
|
||||
// Flush remaining bits if width is not a multiple of 4
|
||||
if (bitShift != 6) *outPtr = currentOutByte;
|
||||
|
||||
@@ -356,12 +253,9 @@ BmpReaderError Bitmap::rewindToData() const {
|
||||
return BmpReaderError::SeekPixelDataFailed;
|
||||
}
|
||||
|
||||
// Reset Floyd-Steinberg error buffers when rewinding
|
||||
if (USE_FLOYD_STEINBERG && errorCurRow && errorNextRow) {
|
||||
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
prevRowY = -1;
|
||||
}
|
||||
// Reset dithering when rewinding
|
||||
if (fsDitherer) fsDitherer->reset();
|
||||
if (atkinsonDitherer) atkinsonDitherer->reset();
|
||||
|
||||
return BmpReaderError::Ok;
|
||||
}
|
||||
|
||||
@@ -2,6 +2,10 @@
|
||||
|
||||
#include <SdFat.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "BitmapHelpers.h"
|
||||
|
||||
enum class BmpReaderError : uint8_t {
|
||||
Ok = 0,
|
||||
FileInvalid,
|
||||
@@ -28,7 +32,7 @@ class Bitmap {
|
||||
public:
|
||||
static const char* errorToString(BmpReaderError err);
|
||||
|
||||
explicit Bitmap(FsFile& file) : file(file) {}
|
||||
explicit Bitmap(FsFile& file, bool dithering = false) : file(file), dithering(dithering) {}
|
||||
~Bitmap();
|
||||
BmpReaderError parseHeaders();
|
||||
BmpReaderError readNextRow(uint8_t* data, uint8_t* rowBuffer) const;
|
||||
@@ -44,6 +48,7 @@ class Bitmap {
|
||||
static uint32_t readLE32(FsFile& f);
|
||||
|
||||
FsFile& file;
|
||||
bool dithering = false;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
bool topDown = false;
|
||||
@@ -56,4 +61,7 @@ class Bitmap {
|
||||
mutable int16_t* errorCurRow = nullptr;
|
||||
mutable int16_t* errorNextRow = nullptr;
|
||||
mutable int prevRowY = -1; // Track row progression for error propagation
|
||||
|
||||
mutable AtkinsonDitherer* atkinsonDitherer = nullptr;
|
||||
mutable FloydSteinbergDitherer* fsDitherer = nullptr;
|
||||
};
|
||||
|
||||
90
lib/GfxRenderer/BitmapHelpers.cpp
Normal file
90
lib/GfxRenderer/BitmapHelpers.cpp
Normal file
@@ -0,0 +1,90 @@
|
||||
#include "BitmapHelpers.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
// Brightness/Contrast adjustments:
|
||||
constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments
|
||||
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
|
||||
constexpr bool GAMMA_CORRECTION = false; // Gamma curve (brightens midtones)
|
||||
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
|
||||
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering
|
||||
|
||||
// Integer approximation of gamma correction (brightens midtones)
|
||||
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
|
||||
static inline int applyGamma(int gray) {
|
||||
if (!GAMMA_CORRECTION) return gray;
|
||||
// Fast integer square root approximation for gamma ~0.5 (brightening)
|
||||
// This brightens dark/mid tones while preserving highlights
|
||||
const int product = gray * 255;
|
||||
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
|
||||
int x = gray;
|
||||
if (x > 0) {
|
||||
x = (x + product / x) >> 1;
|
||||
x = (x + product / x) >> 1;
|
||||
}
|
||||
return x > 255 ? 255 : x;
|
||||
}
|
||||
|
||||
// Apply contrast adjustment around midpoint (128)
|
||||
// factor > 1.0 increases contrast, < 1.0 decreases
|
||||
static inline int applyContrast(int gray) {
|
||||
// Integer-based contrast: (gray - 128) * factor + 128
|
||||
// Using fixed-point: factor 1.15 ≈ 115/100
|
||||
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
|
||||
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
return adjusted;
|
||||
}
|
||||
// Combined brightness/contrast/gamma adjustment
|
||||
int adjustPixel(int gray) {
|
||||
if (!USE_BRIGHTNESS) return gray;
|
||||
|
||||
// Order: contrast first, then brightness, then gamma
|
||||
gray = applyContrast(gray);
|
||||
gray += BRIGHTNESS_BOOST;
|
||||
if (gray > 255) gray = 255;
|
||||
if (gray < 0) gray = 0;
|
||||
gray = applyGamma(gray);
|
||||
|
||||
return gray;
|
||||
}
|
||||
// Simple quantization without dithering - divide into 4 levels
|
||||
// The thresholds are fine-tuned to the X4 display
|
||||
uint8_t quantizeSimple(int gray) {
|
||||
if (gray < 45) {
|
||||
return 0;
|
||||
} else if (gray < 70) {
|
||||
return 1;
|
||||
} else if (gray < 140) {
|
||||
return 2;
|
||||
} else {
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
|
||||
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
||||
// Uses integer hash to generate pseudo-random threshold per pixel
|
||||
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
||||
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
||||
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
||||
const int threshold = static_cast<int>(hash >> 24);
|
||||
|
||||
const int scaled = gray * 3;
|
||||
if (scaled < 255) {
|
||||
return (scaled + threshold >= 255) ? 1 : 0;
|
||||
} else if (scaled < 510) {
|
||||
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
||||
} else {
|
||||
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Main quantization function - selects between methods based on config
|
||||
uint8_t quantize(int gray, int x, int y) {
|
||||
if (USE_NOISE_DITHERING) {
|
||||
return quantizeNoise(gray, x, y);
|
||||
} else {
|
||||
return quantizeSimple(gray);
|
||||
}
|
||||
}
|
||||
233
lib/GfxRenderer/BitmapHelpers.h
Normal file
233
lib/GfxRenderer/BitmapHelpers.h
Normal file
@@ -0,0 +1,233 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstring>
|
||||
|
||||
// Helper functions
|
||||
uint8_t quantize(int gray, int x, int y);
|
||||
uint8_t quantizeSimple(int gray);
|
||||
int adjustPixel(int gray);
|
||||
|
||||
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
|
||||
// Error distribution pattern:
|
||||
// X 1/8 1/8
|
||||
// 1/8 1/8 1/8
|
||||
// 1/8
|
||||
// Less error buildup = fewer artifacts than Floyd-Steinberg
|
||||
class AtkinsonDitherer {
|
||||
public:
|
||||
explicit AtkinsonDitherer(int width) : width(width) {
|
||||
errorRow0 = new int16_t[width + 4](); // Current row
|
||||
errorRow1 = new int16_t[width + 4](); // Next row
|
||||
errorRow2 = new int16_t[width + 4](); // Row after next
|
||||
}
|
||||
|
||||
~AtkinsonDitherer() {
|
||||
delete[] errorRow0;
|
||||
delete[] errorRow1;
|
||||
delete[] errorRow2;
|
||||
}
|
||||
// **1. EXPLICITLY DELETE THE COPY CONSTRUCTOR**
|
||||
AtkinsonDitherer(const AtkinsonDitherer& other) = delete;
|
||||
|
||||
// **2. EXPLICITLY DELETE THE COPY ASSIGNMENT OPERATOR**
|
||||
AtkinsonDitherer& operator=(const AtkinsonDitherer& other) = delete;
|
||||
|
||||
uint8_t processPixel(int gray, int x) {
|
||||
// Add accumulated error
|
||||
int adjusted = gray + errorRow0[x + 2];
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
|
||||
// Quantize to 4 levels
|
||||
uint8_t quantized;
|
||||
int quantizedValue;
|
||||
if (false) { // original thresholds
|
||||
if (adjusted < 43) {
|
||||
quantized = 0;
|
||||
quantizedValue = 0;
|
||||
} else if (adjusted < 128) {
|
||||
quantized = 1;
|
||||
quantizedValue = 85;
|
||||
} else if (adjusted < 213) {
|
||||
quantized = 2;
|
||||
quantizedValue = 170;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 255;
|
||||
}
|
||||
} else { // fine-tuned to X4 eink display
|
||||
if (adjusted < 30) {
|
||||
quantized = 0;
|
||||
quantizedValue = 15;
|
||||
} else if (adjusted < 50) {
|
||||
quantized = 1;
|
||||
quantizedValue = 30;
|
||||
} else if (adjusted < 140) {
|
||||
quantized = 2;
|
||||
quantizedValue = 80;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 210;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate error (only distribute 6/8 = 75%)
|
||||
int error = (adjusted - quantizedValue) >> 3; // error/8
|
||||
|
||||
// Distribute 1/8 to each of 6 neighbors
|
||||
errorRow0[x + 3] += error; // Right
|
||||
errorRow0[x + 4] += error; // Right+1
|
||||
errorRow1[x + 1] += error; // Bottom-left
|
||||
errorRow1[x + 2] += error; // Bottom
|
||||
errorRow1[x + 3] += error; // Bottom-right
|
||||
errorRow2[x + 2] += error; // Two rows down
|
||||
|
||||
return quantized;
|
||||
}
|
||||
|
||||
void nextRow() {
|
||||
int16_t* temp = errorRow0;
|
||||
errorRow0 = errorRow1;
|
||||
errorRow1 = errorRow2;
|
||||
errorRow2 = temp;
|
||||
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
||||
}
|
||||
|
||||
void reset() {
|
||||
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
|
||||
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
|
||||
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
||||
}
|
||||
|
||||
private:
|
||||
int width;
|
||||
int16_t* errorRow0;
|
||||
int16_t* errorRow1;
|
||||
int16_t* errorRow2;
|
||||
};
|
||||
|
||||
// Floyd-Steinberg error diffusion dithering with serpentine scanning
|
||||
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
|
||||
// Error distribution pattern (left-to-right):
|
||||
// X 7/16
|
||||
// 3/16 5/16 1/16
|
||||
// Error distribution pattern (right-to-left, mirrored):
|
||||
// 1/16 5/16 3/16
|
||||
// 7/16 X
|
||||
class FloydSteinbergDitherer {
|
||||
public:
|
||||
explicit FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
|
||||
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
|
||||
errorNextRow = new int16_t[width + 2]();
|
||||
}
|
||||
|
||||
~FloydSteinbergDitherer() {
|
||||
delete[] errorCurRow;
|
||||
delete[] errorNextRow;
|
||||
}
|
||||
|
||||
// **1. EXPLICITLY DELETE THE COPY CONSTRUCTOR**
|
||||
FloydSteinbergDitherer(const FloydSteinbergDitherer& other) = delete;
|
||||
|
||||
// **2. EXPLICITLY DELETE THE COPY ASSIGNMENT OPERATOR**
|
||||
FloydSteinbergDitherer& operator=(const FloydSteinbergDitherer& other) = delete;
|
||||
|
||||
// Process a single pixel and return quantized 2-bit value
|
||||
// x is the logical x position (0 to width-1), direction handled internally
|
||||
uint8_t processPixel(int gray, int x) {
|
||||
// Add accumulated error to this pixel
|
||||
int adjusted = gray + errorCurRow[x + 1];
|
||||
|
||||
// Clamp to valid range
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
|
||||
// Quantize to 4 levels (0, 85, 170, 255)
|
||||
uint8_t quantized;
|
||||
int quantizedValue;
|
||||
if (false) { // original thresholds
|
||||
if (adjusted < 43) {
|
||||
quantized = 0;
|
||||
quantizedValue = 0;
|
||||
} else if (adjusted < 128) {
|
||||
quantized = 1;
|
||||
quantizedValue = 85;
|
||||
} else if (adjusted < 213) {
|
||||
quantized = 2;
|
||||
quantizedValue = 170;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 255;
|
||||
}
|
||||
} else { // fine-tuned to X4 eink display
|
||||
if (adjusted < 30) {
|
||||
quantized = 0;
|
||||
quantizedValue = 15;
|
||||
} else if (adjusted < 50) {
|
||||
quantized = 1;
|
||||
quantizedValue = 30;
|
||||
} else if (adjusted < 140) {
|
||||
quantized = 2;
|
||||
quantizedValue = 80;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 210;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate error
|
||||
int error = adjusted - quantizedValue;
|
||||
|
||||
// Distribute error to neighbors (serpentine: direction-aware)
|
||||
if (!isReverseRow()) {
|
||||
// Left to right: standard distribution
|
||||
// Right: 7/16
|
||||
errorCurRow[x + 2] += (error * 7) >> 4;
|
||||
// Bottom-left: 3/16
|
||||
errorNextRow[x] += (error * 3) >> 4;
|
||||
// Bottom: 5/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4;
|
||||
// Bottom-right: 1/16
|
||||
errorNextRow[x + 2] += (error) >> 4;
|
||||
} else {
|
||||
// Right to left: mirrored distribution
|
||||
// Left: 7/16
|
||||
errorCurRow[x] += (error * 7) >> 4;
|
||||
// Bottom-right: 3/16
|
||||
errorNextRow[x + 2] += (error * 3) >> 4;
|
||||
// Bottom: 5/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4;
|
||||
// Bottom-left: 1/16
|
||||
errorNextRow[x] += (error) >> 4;
|
||||
}
|
||||
|
||||
return quantized;
|
||||
}
|
||||
|
||||
// Call at the end of each row to swap buffers
|
||||
void nextRow() {
|
||||
// Swap buffers
|
||||
int16_t* temp = errorCurRow;
|
||||
errorCurRow = errorNextRow;
|
||||
errorNextRow = temp;
|
||||
// Clear the next row buffer
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
rowCount++;
|
||||
}
|
||||
|
||||
// Check if current row should be processed in reverse
|
||||
bool isReverseRow() const { return (rowCount & 1) != 0; }
|
||||
|
||||
// Reset for a new image or MCU block
|
||||
void reset() {
|
||||
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
rowCount = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
int width;
|
||||
int rowCount;
|
||||
int16_t* errorCurRow;
|
||||
int16_t* errorNextRow;
|
||||
};
|
||||
@@ -7,6 +7,8 @@
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
|
||||
#include "BitmapHelpers.h"
|
||||
|
||||
// Context structure for picojpeg callback
|
||||
struct JpegReadContext {
|
||||
FsFile& file;
|
||||
@@ -23,282 +25,12 @@ constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantizati
|
||||
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
|
||||
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
|
||||
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
|
||||
// Brightness/Contrast adjustments:
|
||||
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
|
||||
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
|
||||
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
|
||||
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
|
||||
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
|
||||
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
|
||||
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
|
||||
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
|
||||
// ============================================================================
|
||||
|
||||
// Integer approximation of gamma correction (brightens midtones)
|
||||
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
|
||||
static inline int applyGamma(int gray) {
|
||||
if (!GAMMA_CORRECTION) return gray;
|
||||
// Fast integer square root approximation for gamma ~0.5 (brightening)
|
||||
// This brightens dark/mid tones while preserving highlights
|
||||
const int product = gray * 255;
|
||||
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
|
||||
int x = gray;
|
||||
if (x > 0) {
|
||||
x = (x + product / x) >> 1;
|
||||
x = (x + product / x) >> 1;
|
||||
}
|
||||
return x > 255 ? 255 : x;
|
||||
}
|
||||
|
||||
// Apply contrast adjustment around midpoint (128)
|
||||
// factor > 1.0 increases contrast, < 1.0 decreases
|
||||
static inline int applyContrast(int gray) {
|
||||
// Integer-based contrast: (gray - 128) * factor + 128
|
||||
// Using fixed-point: factor 1.15 ≈ 115/100
|
||||
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
|
||||
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
return adjusted;
|
||||
}
|
||||
|
||||
// Combined brightness/contrast/gamma adjustment
|
||||
static inline int adjustPixel(int gray) {
|
||||
if (!USE_BRIGHTNESS) return gray;
|
||||
|
||||
// Order: contrast first, then brightness, then gamma
|
||||
gray = applyContrast(gray);
|
||||
gray += BRIGHTNESS_BOOST;
|
||||
if (gray > 255) gray = 255;
|
||||
if (gray < 0) gray = 0;
|
||||
gray = applyGamma(gray);
|
||||
|
||||
return gray;
|
||||
}
|
||||
|
||||
// Simple quantization without dithering - just divide into 4 levels
|
||||
static inline uint8_t quantizeSimple(int gray) {
|
||||
gray = adjustPixel(gray);
|
||||
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
|
||||
return static_cast<uint8_t>(gray >> 6);
|
||||
}
|
||||
|
||||
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
||||
// Uses integer hash to generate pseudo-random threshold per pixel
|
||||
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
||||
gray = adjustPixel(gray);
|
||||
|
||||
// Generate noise threshold using integer hash (no regular pattern to alias)
|
||||
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
||||
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
||||
const int threshold = static_cast<int>(hash >> 24); // 0-255
|
||||
|
||||
// Map gray (0-255) to 4 levels with dithering
|
||||
const int scaled = gray * 3;
|
||||
|
||||
if (scaled < 255) {
|
||||
return (scaled + threshold >= 255) ? 1 : 0;
|
||||
} else if (scaled < 510) {
|
||||
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
||||
} else {
|
||||
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Main quantization function - selects between methods based on config
|
||||
static inline uint8_t quantize(int gray, int x, int y) {
|
||||
if (USE_NOISE_DITHERING) {
|
||||
return quantizeNoise(gray, x, y);
|
||||
} else {
|
||||
return quantizeSimple(gray);
|
||||
}
|
||||
}
|
||||
|
||||
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
|
||||
// Error distribution pattern:
|
||||
// X 1/8 1/8
|
||||
// 1/8 1/8 1/8
|
||||
// 1/8
|
||||
// Less error buildup = fewer artifacts than Floyd-Steinberg
|
||||
class AtkinsonDitherer {
|
||||
public:
|
||||
AtkinsonDitherer(int width) : width(width) {
|
||||
errorRow0 = new int16_t[width + 4](); // Current row
|
||||
errorRow1 = new int16_t[width + 4](); // Next row
|
||||
errorRow2 = new int16_t[width + 4](); // Row after next
|
||||
}
|
||||
|
||||
~AtkinsonDitherer() {
|
||||
delete[] errorRow0;
|
||||
delete[] errorRow1;
|
||||
delete[] errorRow2;
|
||||
}
|
||||
|
||||
uint8_t processPixel(int gray, int x) {
|
||||
// Apply brightness/contrast/gamma adjustments
|
||||
gray = adjustPixel(gray);
|
||||
|
||||
// Add accumulated error
|
||||
int adjusted = gray + errorRow0[x + 2];
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
|
||||
// Quantize to 4 levels
|
||||
uint8_t quantized;
|
||||
int quantizedValue;
|
||||
if (adjusted < 43) {
|
||||
quantized = 0;
|
||||
quantizedValue = 0;
|
||||
} else if (adjusted < 128) {
|
||||
quantized = 1;
|
||||
quantizedValue = 85;
|
||||
} else if (adjusted < 213) {
|
||||
quantized = 2;
|
||||
quantizedValue = 170;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 255;
|
||||
}
|
||||
|
||||
// Calculate error (only distribute 6/8 = 75%)
|
||||
int error = (adjusted - quantizedValue) >> 3; // error/8
|
||||
|
||||
// Distribute 1/8 to each of 6 neighbors
|
||||
errorRow0[x + 3] += error; // Right
|
||||
errorRow0[x + 4] += error; // Right+1
|
||||
errorRow1[x + 1] += error; // Bottom-left
|
||||
errorRow1[x + 2] += error; // Bottom
|
||||
errorRow1[x + 3] += error; // Bottom-right
|
||||
errorRow2[x + 2] += error; // Two rows down
|
||||
|
||||
return quantized;
|
||||
}
|
||||
|
||||
void nextRow() {
|
||||
int16_t* temp = errorRow0;
|
||||
errorRow0 = errorRow1;
|
||||
errorRow1 = errorRow2;
|
||||
errorRow2 = temp;
|
||||
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
||||
}
|
||||
|
||||
void reset() {
|
||||
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
|
||||
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
|
||||
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
||||
}
|
||||
|
||||
private:
|
||||
int width;
|
||||
int16_t* errorRow0;
|
||||
int16_t* errorRow1;
|
||||
int16_t* errorRow2;
|
||||
};
|
||||
|
||||
// Floyd-Steinberg error diffusion dithering with serpentine scanning
|
||||
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
|
||||
// Error distribution pattern (left-to-right):
|
||||
// X 7/16
|
||||
// 3/16 5/16 1/16
|
||||
// Error distribution pattern (right-to-left, mirrored):
|
||||
// 1/16 5/16 3/16
|
||||
// 7/16 X
|
||||
class FloydSteinbergDitherer {
|
||||
public:
|
||||
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
|
||||
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
|
||||
errorNextRow = new int16_t[width + 2]();
|
||||
}
|
||||
|
||||
~FloydSteinbergDitherer() {
|
||||
delete[] errorCurRow;
|
||||
delete[] errorNextRow;
|
||||
}
|
||||
|
||||
// Process a single pixel and return quantized 2-bit value
|
||||
// x is the logical x position (0 to width-1), direction handled internally
|
||||
uint8_t processPixel(int gray, int x, bool reverseDirection) {
|
||||
// Add accumulated error to this pixel
|
||||
int adjusted = gray + errorCurRow[x + 1];
|
||||
|
||||
// Clamp to valid range
|
||||
if (adjusted < 0) adjusted = 0;
|
||||
if (adjusted > 255) adjusted = 255;
|
||||
|
||||
// Quantize to 4 levels (0, 85, 170, 255)
|
||||
uint8_t quantized;
|
||||
int quantizedValue;
|
||||
if (adjusted < 43) {
|
||||
quantized = 0;
|
||||
quantizedValue = 0;
|
||||
} else if (adjusted < 128) {
|
||||
quantized = 1;
|
||||
quantizedValue = 85;
|
||||
} else if (adjusted < 213) {
|
||||
quantized = 2;
|
||||
quantizedValue = 170;
|
||||
} else {
|
||||
quantized = 3;
|
||||
quantizedValue = 255;
|
||||
}
|
||||
|
||||
// Calculate error
|
||||
int error = adjusted - quantizedValue;
|
||||
|
||||
// Distribute error to neighbors (serpentine: direction-aware)
|
||||
if (!reverseDirection) {
|
||||
// Left to right: standard distribution
|
||||
// Right: 7/16
|
||||
errorCurRow[x + 2] += (error * 7) >> 4;
|
||||
// Bottom-left: 3/16
|
||||
errorNextRow[x] += (error * 3) >> 4;
|
||||
// Bottom: 5/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4;
|
||||
// Bottom-right: 1/16
|
||||
errorNextRow[x + 2] += (error) >> 4;
|
||||
} else {
|
||||
// Right to left: mirrored distribution
|
||||
// Left: 7/16
|
||||
errorCurRow[x] += (error * 7) >> 4;
|
||||
// Bottom-right: 3/16
|
||||
errorNextRow[x + 2] += (error * 3) >> 4;
|
||||
// Bottom: 5/16
|
||||
errorNextRow[x + 1] += (error * 5) >> 4;
|
||||
// Bottom-left: 1/16
|
||||
errorNextRow[x] += (error) >> 4;
|
||||
}
|
||||
|
||||
return quantized;
|
||||
}
|
||||
|
||||
// Call at the end of each row to swap buffers
|
||||
void nextRow() {
|
||||
// Swap buffers
|
||||
int16_t* temp = errorCurRow;
|
||||
errorCurRow = errorNextRow;
|
||||
errorNextRow = temp;
|
||||
// Clear the next row buffer
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
rowCount++;
|
||||
}
|
||||
|
||||
// Check if current row should be processed in reverse
|
||||
bool isReverseRow() const { return (rowCount & 1) != 0; }
|
||||
|
||||
// Reset for a new image or MCU block
|
||||
void reset() {
|
||||
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
||||
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
||||
rowCount = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
int width;
|
||||
int rowCount;
|
||||
int16_t* errorCurRow;
|
||||
int16_t* errorNextRow;
|
||||
};
|
||||
|
||||
inline void write16(Print& out, const uint16_t value) {
|
||||
out.write(value & 0xFF);
|
||||
out.write((value >> 8) & 0xFF);
|
||||
@@ -623,12 +355,12 @@ bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
|
||||
}
|
||||
} else {
|
||||
for (int x = 0; x < outWidth; x++) {
|
||||
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
|
||||
const uint8_t gray = adjustPixel(mcuRowBuffer[bufferY * imageInfo.m_width + x]);
|
||||
uint8_t twoBit;
|
||||
if (atkinsonDitherer) {
|
||||
twoBit = atkinsonDitherer->processPixel(gray, x);
|
||||
} else if (fsDitherer) {
|
||||
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
|
||||
twoBit = fsDitherer->processPixel(gray, x);
|
||||
} else {
|
||||
twoBit = quantize(gray, x, y);
|
||||
}
|
||||
@@ -686,12 +418,12 @@ bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
|
||||
}
|
||||
} else {
|
||||
for (int x = 0; x < outWidth; x++) {
|
||||
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
|
||||
const uint8_t gray = adjustPixel((rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0);
|
||||
uint8_t twoBit;
|
||||
if (atkinsonDitherer) {
|
||||
twoBit = atkinsonDitherer->processPixel(gray, x);
|
||||
} else if (fsDitherer) {
|
||||
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
|
||||
twoBit = fsDitherer->processPixel(gray, x);
|
||||
} else {
|
||||
twoBit = quantize(gray, x, currentOutY);
|
||||
}
|
||||
|
||||
@@ -86,7 +86,7 @@ void SleepActivity::renderCustomSleepScreen() const {
|
||||
if (SdMan.openFileForRead("SLP", filename, file)) {
|
||||
Serial.printf("[%lu] [SLP] Randomly loading: /sleep/%s\n", millis(), files[randomFileIndex].c_str());
|
||||
delay(100);
|
||||
Bitmap bitmap(file);
|
||||
Bitmap bitmap(file, true);
|
||||
if (bitmap.parseHeaders() == BmpReaderError::Ok) {
|
||||
renderBitmapSleepScreen(bitmap);
|
||||
dir.close();
|
||||
@@ -101,7 +101,7 @@ void SleepActivity::renderCustomSleepScreen() const {
|
||||
// render a custom sleep screen instead of the default.
|
||||
FsFile file;
|
||||
if (SdMan.openFileForRead("SLP", "/sleep.bmp", file)) {
|
||||
Bitmap bitmap(file);
|
||||
Bitmap bitmap(file, true);
|
||||
if (bitmap.parseHeaders() == BmpReaderError::Ok) {
|
||||
Serial.printf("[%lu] [SLP] Loading: /sleep.bmp\n", millis());
|
||||
renderBitmapSleepScreen(bitmap);
|
||||
|
||||
Reference in New Issue
Block a user