#include "Bitmap.h" #include #include // ============================================================================ // IMAGE PROCESSING OPTIONS - Toggle these to test different configurations // ============================================================================ // Note: For cover images, dithering is done in JpegToBmpConverter.cpp // This file handles BMP reading - use simple quantization to avoid double-dithering constexpr bool USE_FLOYD_STEINBERG = false; // Disabled - dithering done at JPEG conversion constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering // Brightness adjustments: constexpr bool USE_BRIGHTNESS = false; // true: apply brightness/gamma adjustments constexpr int BRIGHTNESS_BOOST = 20; // Brightness offset (0-50), only if USE_BRIGHTNESS=true constexpr bool GAMMA_CORRECTION = false; // Gamma curve, only if USE_BRIGHTNESS=true // ============================================================================ // Integer approximation of gamma correction (brightens midtones) static inline int applyGamma(int gray) { if (!GAMMA_CORRECTION) return gray; const int product = gray * 255; int x = gray; if (x > 0) { x = (x + product / x) >> 1; x = (x + product / x) >> 1; } return x > 255 ? 255 : x; } // Simple quantization without dithering - just divide into 4 levels static inline uint8_t quantizeSimple(int gray) { if (USE_BRIGHTNESS) { gray += BRIGHTNESS_BOOST; if (gray > 255) gray = 255; gray = applyGamma(gray); } return static_cast(gray >> 6); } // Hash-based noise dithering - survives downsampling without moiré artifacts static inline uint8_t quantizeNoise(int gray, int x, int y) { if (USE_BRIGHTNESS) { gray += BRIGHTNESS_BOOST; if (gray > 255) gray = 255; gray = applyGamma(gray); } uint32_t hash = static_cast(x) * 374761393u + static_cast(y) * 668265263u; hash = (hash ^ (hash >> 13)) * 1274126177u; const int threshold = static_cast(hash >> 24); const int scaled = gray * 3; if (scaled < 255) { return (scaled + threshold >= 255) ? 1 : 0; } else if (scaled < 510) { return ((scaled - 255) + threshold >= 255) ? 2 : 1; } else { return ((scaled - 510) + threshold >= 255) ? 3 : 2; } } // Main quantization function static inline uint8_t quantize(int gray, int x, int y) { if (USE_NOISE_DITHERING) { return quantizeNoise(gray, x, y); } else { return quantizeSimple(gray); } } // Floyd-Steinberg quantization with error diffusion and serpentine scanning // Returns 2-bit value (0-3) and updates error buffers static inline uint8_t quantizeFloydSteinberg(int gray, int x, int width, int16_t* errorCurRow, int16_t* errorNextRow, bool reverseDir) { // Add accumulated error to this pixel int adjusted = gray + errorCurRow[x + 1]; // Clamp to valid range if (adjusted < 0) adjusted = 0; if (adjusted > 255) adjusted = 255; // Quantize to 4 levels (0, 85, 170, 255) uint8_t quantized; int quantizedValue; if (adjusted < 43) { quantized = 0; quantizedValue = 0; } else if (adjusted < 128) { quantized = 1; quantizedValue = 85; } else if (adjusted < 213) { quantized = 2; quantizedValue = 170; } else { quantized = 3; quantizedValue = 255; } // Calculate error int error = adjusted - quantizedValue; // Distribute error to neighbors (serpentine: direction-aware) if (!reverseDir) { // Left to right errorCurRow[x + 2] += (error * 7) >> 4; // Right: 7/16 errorNextRow[x] += (error * 3) >> 4; // Bottom-left: 3/16 errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16 errorNextRow[x + 2] += (error) >> 4; // Bottom-right: 1/16 } else { // Right to left (mirrored) errorCurRow[x] += (error * 7) >> 4; // Left: 7/16 errorNextRow[x + 2] += (error * 3) >> 4; // Bottom-right: 3/16 errorNextRow[x + 1] += (error * 5) >> 4; // Bottom: 5/16 errorNextRow[x] += (error) >> 4; // Bottom-left: 1/16 } return quantized; } Bitmap::~Bitmap() { delete[] errorCurRow; delete[] errorNextRow; } uint16_t Bitmap::readLE16(FsFile& f) { const int c0 = f.read(); const int c1 = f.read(); const auto b0 = static_cast(c0 < 0 ? 0 : c0); const auto b1 = static_cast(c1 < 0 ? 0 : c1); return static_cast(b0) | (static_cast(b1) << 8); } uint32_t Bitmap::readLE32(FsFile& f) { const int c0 = f.read(); const int c1 = f.read(); const int c2 = f.read(); const int c3 = f.read(); const auto b0 = static_cast(c0 < 0 ? 0 : c0); const auto b1 = static_cast(c1 < 0 ? 0 : c1); const auto b2 = static_cast(c2 < 0 ? 0 : c2); const auto b3 = static_cast(c3 < 0 ? 0 : c3); return static_cast(b0) | (static_cast(b1) << 8) | (static_cast(b2) << 16) | (static_cast(b3) << 24); } const char* Bitmap::errorToString(BmpReaderError err) { switch (err) { case BmpReaderError::Ok: return "Ok"; case BmpReaderError::FileInvalid: return "FileInvalid"; case BmpReaderError::SeekStartFailed: return "SeekStartFailed"; case BmpReaderError::NotBMP: return "NotBMP (missing 'BM')"; case BmpReaderError::DIBTooSmall: return "DIBTooSmall (<40 bytes)"; case BmpReaderError::BadPlanes: return "BadPlanes (!= 1)"; case BmpReaderError::UnsupportedBpp: return "UnsupportedBpp (expected 1, 2, 8, 24, or 32)"; case BmpReaderError::UnsupportedCompression: return "UnsupportedCompression (expected BI_RGB or BI_BITFIELDS for 32bpp)"; case BmpReaderError::BadDimensions: return "BadDimensions"; case BmpReaderError::ImageTooLarge: return "ImageTooLarge (max 2048x3072)"; case BmpReaderError::PaletteTooLarge: return "PaletteTooLarge"; case BmpReaderError::SeekPixelDataFailed: return "SeekPixelDataFailed"; case BmpReaderError::BufferTooSmall: return "BufferTooSmall"; case BmpReaderError::OomRowBuffer: return "OomRowBuffer"; case BmpReaderError::ShortReadRow: return "ShortReadRow"; } return "Unknown"; } BmpReaderError Bitmap::parseHeaders() { if (!file) return BmpReaderError::FileInvalid; if (!file.seek(0)) return BmpReaderError::SeekStartFailed; // --- BMP FILE HEADER --- const uint16_t bfType = readLE16(file); if (bfType != 0x4D42) return BmpReaderError::NotBMP; file.seekCur(8); bfOffBits = readLE32(file); // --- DIB HEADER --- const uint32_t biSize = readLE32(file); if (biSize < 40) return BmpReaderError::DIBTooSmall; width = static_cast(readLE32(file)); const auto rawHeight = static_cast(readLE32(file)); topDown = rawHeight < 0; height = topDown ? -rawHeight : rawHeight; const uint16_t planes = readLE16(file); bpp = readLE16(file); const uint32_t comp = readLE32(file); const bool validBpp = bpp == 1 || bpp == 2 || bpp == 8 || bpp == 24 || bpp == 32; if (planes != 1) return BmpReaderError::BadPlanes; if (!validBpp) return BmpReaderError::UnsupportedBpp; // Allow BI_RGB (0) for all, and BI_BITFIELDS (3) for 32bpp which is common for BGRA masks. if (!(comp == 0 || (bpp == 32 && comp == 3))) return BmpReaderError::UnsupportedCompression; file.seekCur(12); // biSizeImage, biXPelsPerMeter, biYPelsPerMeter const uint32_t colorsUsed = readLE32(file); if (colorsUsed > 256u) return BmpReaderError::PaletteTooLarge; file.seekCur(4); // biClrImportant if (width <= 0 || height <= 0) return BmpReaderError::BadDimensions; // Safety limits to prevent memory issues on ESP32 constexpr int MAX_IMAGE_WIDTH = 2048; constexpr int MAX_IMAGE_HEIGHT = 3072; if (width > MAX_IMAGE_WIDTH || height > MAX_IMAGE_HEIGHT) { return BmpReaderError::ImageTooLarge; } // Pre-calculate Row Bytes to avoid doing this every row rowBytes = (width * bpp + 31) / 32 * 4; for (int i = 0; i < 256; i++) paletteLum[i] = static_cast(i); if (colorsUsed > 0) { for (uint32_t i = 0; i < colorsUsed; i++) { uint8_t rgb[4]; file.read(rgb, 4); // Read B, G, R, Reserved in one go paletteLum[i] = (77u * rgb[2] + 150u * rgb[1] + 29u * rgb[0]) >> 8; } } if (!file.seek(bfOffBits)) { return BmpReaderError::SeekPixelDataFailed; } // Allocate Floyd-Steinberg error buffers if enabled if (USE_FLOYD_STEINBERG) { delete[] errorCurRow; delete[] errorNextRow; errorCurRow = new int16_t[width + 2](); // +2 for boundary handling errorNextRow = new int16_t[width + 2](); lastRowY = -1; } return BmpReaderError::Ok; } // packed 2bpp output, 0 = black, 1 = dark gray, 2 = light gray, 3 = white BmpReaderError Bitmap::readRow(uint8_t* data, uint8_t* rowBuffer, int rowY) const { // Note: rowBuffer should be pre-allocated by the caller to size 'rowBytes' if (file.read(rowBuffer, rowBytes) != rowBytes) return BmpReaderError::ShortReadRow; // Handle Floyd-Steinberg error buffer progression const bool useFS = USE_FLOYD_STEINBERG && errorCurRow && errorNextRow; if (useFS) { // Check if we need to advance to next row (or reset if jumping) if (rowY != lastRowY + 1 && rowY != 0) { // Non-sequential row access - reset error buffers memset(errorCurRow, 0, (width + 2) * sizeof(int16_t)); memset(errorNextRow, 0, (width + 2) * sizeof(int16_t)); } else if (rowY > 0) { // Sequential access - swap buffers int16_t* temp = errorCurRow; errorCurRow = errorNextRow; errorNextRow = temp; memset(errorNextRow, 0, (width + 2) * sizeof(int16_t)); } lastRowY = rowY; } uint8_t* outPtr = data; uint8_t currentOutByte = 0; int bitShift = 6; int currentX = 0; // Helper lambda to pack 2bpp color into the output stream auto packPixel = [&](const uint8_t lum) { uint8_t color; if (useFS) { // Floyd-Steinberg error diffusion color = quantizeFloydSteinberg(lum, currentX, width, errorCurRow, errorNextRow, false); } else { // Simple quantization or noise dithering color = quantize(lum, currentX, rowY); } currentOutByte |= (color << bitShift); if (bitShift == 0) { *outPtr++ = currentOutByte; currentOutByte = 0; bitShift = 6; } else { bitShift -= 2; } currentX++; }; uint8_t lum; switch (bpp) { case 32: { const uint8_t* p = rowBuffer; for (int x = 0; x < width; x++) { lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; packPixel(lum); p += 4; } break; } case 24: { const uint8_t* p = rowBuffer; for (int x = 0; x < width; x++) { lum = (77u * p[2] + 150u * p[1] + 29u * p[0]) >> 8; packPixel(lum); p += 3; } break; } case 8: { for (int x = 0; x < width; x++) { packPixel(paletteLum[rowBuffer[x]]); } break; } case 2: { for (int x = 0; x < width; x++) { lum = paletteLum[(rowBuffer[x >> 2] >> (6 - ((x & 3) * 2))) & 0x03]; packPixel(lum); } break; } case 1: { for (int x = 0; x < width; x++) { lum = (rowBuffer[x >> 3] & (0x80 >> (x & 7))) ? 0xFF : 0x00; packPixel(lum); } break; } default: return BmpReaderError::UnsupportedBpp; } // Flush remaining bits if width is not a multiple of 4 if (bitShift != 6) *outPtr = currentOutByte; return BmpReaderError::Ok; } BmpReaderError Bitmap::rewindToData() const { if (!file.seek(bfOffBits)) { return BmpReaderError::SeekPixelDataFailed; } // Reset Floyd-Steinberg error buffers when rewinding if (USE_FLOYD_STEINBERG && errorCurRow && errorNextRow) { memset(errorCurRow, 0, (width + 2) * sizeof(int16_t)); memset(errorNextRow, 0, (width + 2) * sizeof(int16_t)); lastRowY = -1; } return BmpReaderError::Ok; }