2025-12-21 17:15:17 +11:00
|
|
|
#include "JpegToBmpConverter.h"
|
|
|
|
|
|
2025-12-30 15:09:30 +10:00
|
|
|
#include <HardwareSerial.h>
|
|
|
|
|
#include <SdFat.h>
|
2025-12-21 17:15:17 +11:00
|
|
|
#include <picojpeg.h>
|
|
|
|
|
|
|
|
|
|
#include <cstdio>
|
|
|
|
|
#include <cstring>
|
|
|
|
|
|
|
|
|
|
// Context structure for picojpeg callback
|
|
|
|
|
struct JpegReadContext {
|
2025-12-30 15:09:30 +10:00
|
|
|
FsFile& file;
|
2025-12-21 17:15:17 +11:00
|
|
|
uint8_t buffer[512];
|
|
|
|
|
size_t bufferPos;
|
|
|
|
|
size_t bufferFilled;
|
|
|
|
|
};
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// ============================================================================
|
|
|
|
|
// IMAGE PROCESSING OPTIONS - Toggle these to test different configurations
|
|
|
|
|
// ============================================================================
|
|
|
|
|
constexpr bool USE_8BIT_OUTPUT = false; // true: 8-bit grayscale (no quantization), false: 2-bit (4 levels)
|
|
|
|
|
// Dithering method selection (only one should be true, or all false for simple quantization):
|
|
|
|
|
constexpr bool USE_ATKINSON = true; // Atkinson dithering (cleaner than F-S, less error diffusion)
|
|
|
|
|
constexpr bool USE_FLOYD_STEINBERG = false; // Floyd-Steinberg error diffusion (can cause "worm" artifacts)
|
|
|
|
|
constexpr bool USE_NOISE_DITHERING = false; // Hash-based noise dithering (good for downsampling)
|
|
|
|
|
// Brightness/Contrast adjustments:
|
|
|
|
|
constexpr bool USE_BRIGHTNESS = true; // true: apply brightness/gamma adjustments
|
|
|
|
|
constexpr int BRIGHTNESS_BOOST = 10; // Brightness offset (0-50)
|
|
|
|
|
constexpr bool GAMMA_CORRECTION = true; // Gamma curve (brightens midtones)
|
|
|
|
|
constexpr float CONTRAST_FACTOR = 1.15f; // Contrast multiplier (1.0 = no change, >1 = more contrast)
|
|
|
|
|
// Pre-resize to target display size (CRITICAL: avoids dithering artifacts from post-downsampling)
|
|
|
|
|
constexpr bool USE_PRESCALE = true; // true: scale image to target size before dithering
|
|
|
|
|
constexpr int TARGET_MAX_WIDTH = 480; // Max width for cover images (portrait display width)
|
|
|
|
|
constexpr int TARGET_MAX_HEIGHT = 800; // Max height for cover images (portrait display height)
|
|
|
|
|
// ============================================================================
|
|
|
|
|
|
|
|
|
|
// Integer approximation of gamma correction (brightens midtones)
|
|
|
|
|
// Uses a simple curve: out = 255 * sqrt(in/255) ≈ sqrt(in * 255)
|
|
|
|
|
static inline int applyGamma(int gray) {
|
|
|
|
|
if (!GAMMA_CORRECTION) return gray;
|
|
|
|
|
// Fast integer square root approximation for gamma ~0.5 (brightening)
|
|
|
|
|
// This brightens dark/mid tones while preserving highlights
|
|
|
|
|
const int product = gray * 255;
|
|
|
|
|
// Newton-Raphson integer sqrt (2 iterations for good accuracy)
|
|
|
|
|
int x = gray;
|
|
|
|
|
if (x > 0) {
|
|
|
|
|
x = (x + product / x) >> 1;
|
|
|
|
|
x = (x + product / x) >> 1;
|
|
|
|
|
}
|
|
|
|
|
return x > 255 ? 255 : x;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Apply contrast adjustment around midpoint (128)
|
|
|
|
|
// factor > 1.0 increases contrast, < 1.0 decreases
|
|
|
|
|
static inline int applyContrast(int gray) {
|
|
|
|
|
// Integer-based contrast: (gray - 128) * factor + 128
|
|
|
|
|
// Using fixed-point: factor 1.15 ≈ 115/100
|
|
|
|
|
constexpr int factorNum = static_cast<int>(CONTRAST_FACTOR * 100);
|
|
|
|
|
int adjusted = ((gray - 128) * factorNum) / 100 + 128;
|
|
|
|
|
if (adjusted < 0) adjusted = 0;
|
|
|
|
|
if (adjusted > 255) adjusted = 255;
|
|
|
|
|
return adjusted;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Combined brightness/contrast/gamma adjustment
|
|
|
|
|
static inline int adjustPixel(int gray) {
|
|
|
|
|
if (!USE_BRIGHTNESS) return gray;
|
|
|
|
|
|
|
|
|
|
// Order: contrast first, then brightness, then gamma
|
|
|
|
|
gray = applyContrast(gray);
|
|
|
|
|
gray += BRIGHTNESS_BOOST;
|
|
|
|
|
if (gray > 255) gray = 255;
|
|
|
|
|
if (gray < 0) gray = 0;
|
|
|
|
|
gray = applyGamma(gray);
|
|
|
|
|
|
|
|
|
|
return gray;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Simple quantization without dithering - just divide into 4 levels
|
|
|
|
|
static inline uint8_t quantizeSimple(int gray) {
|
|
|
|
|
gray = adjustPixel(gray);
|
|
|
|
|
// Simple 2-bit quantization: 0-63=0, 64-127=1, 128-191=2, 192-255=3
|
|
|
|
|
return static_cast<uint8_t>(gray >> 6);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Hash-based noise dithering - survives downsampling without moiré artifacts
|
|
|
|
|
// Uses integer hash to generate pseudo-random threshold per pixel
|
|
|
|
|
static inline uint8_t quantizeNoise(int gray, int x, int y) {
|
|
|
|
|
gray = adjustPixel(gray);
|
|
|
|
|
|
|
|
|
|
// Generate noise threshold using integer hash (no regular pattern to alias)
|
|
|
|
|
uint32_t hash = static_cast<uint32_t>(x) * 374761393u + static_cast<uint32_t>(y) * 668265263u;
|
|
|
|
|
hash = (hash ^ (hash >> 13)) * 1274126177u;
|
|
|
|
|
const int threshold = static_cast<int>(hash >> 24); // 0-255
|
|
|
|
|
|
|
|
|
|
// Map gray (0-255) to 4 levels with dithering
|
|
|
|
|
const int scaled = gray * 3;
|
|
|
|
|
|
|
|
|
|
if (scaled < 255) {
|
|
|
|
|
return (scaled + threshold >= 255) ? 1 : 0;
|
|
|
|
|
} else if (scaled < 510) {
|
|
|
|
|
return ((scaled - 255) + threshold >= 255) ? 2 : 1;
|
|
|
|
|
} else {
|
|
|
|
|
return ((scaled - 510) + threshold >= 255) ? 3 : 2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Main quantization function - selects between methods based on config
|
|
|
|
|
static inline uint8_t quantize(int gray, int x, int y) {
|
|
|
|
|
if (USE_NOISE_DITHERING) {
|
|
|
|
|
return quantizeNoise(gray, x, y);
|
|
|
|
|
} else {
|
|
|
|
|
return quantizeSimple(gray);
|
|
|
|
|
}
|
2025-12-21 17:15:17 +11:00
|
|
|
}
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Atkinson dithering - distributes only 6/8 (75%) of error for cleaner results
|
|
|
|
|
// Error distribution pattern:
|
|
|
|
|
// X 1/8 1/8
|
|
|
|
|
// 1/8 1/8 1/8
|
|
|
|
|
// 1/8
|
|
|
|
|
// Less error buildup = fewer artifacts than Floyd-Steinberg
|
|
|
|
|
class AtkinsonDitherer {
|
|
|
|
|
public:
|
|
|
|
|
AtkinsonDitherer(int width) : width(width) {
|
|
|
|
|
errorRow0 = new int16_t[width + 4](); // Current row
|
|
|
|
|
errorRow1 = new int16_t[width + 4](); // Next row
|
|
|
|
|
errorRow2 = new int16_t[width + 4](); // Row after next
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
~AtkinsonDitherer() {
|
|
|
|
|
delete[] errorRow0;
|
|
|
|
|
delete[] errorRow1;
|
|
|
|
|
delete[] errorRow2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint8_t processPixel(int gray, int x) {
|
|
|
|
|
// Apply brightness/contrast/gamma adjustments
|
|
|
|
|
gray = adjustPixel(gray);
|
|
|
|
|
|
|
|
|
|
// Add accumulated error
|
|
|
|
|
int adjusted = gray + errorRow0[x + 2];
|
|
|
|
|
if (adjusted < 0) adjusted = 0;
|
|
|
|
|
if (adjusted > 255) adjusted = 255;
|
|
|
|
|
|
|
|
|
|
// Quantize to 4 levels
|
|
|
|
|
uint8_t quantized;
|
|
|
|
|
int quantizedValue;
|
|
|
|
|
if (adjusted < 43) {
|
|
|
|
|
quantized = 0;
|
|
|
|
|
quantizedValue = 0;
|
|
|
|
|
} else if (adjusted < 128) {
|
|
|
|
|
quantized = 1;
|
|
|
|
|
quantizedValue = 85;
|
|
|
|
|
} else if (adjusted < 213) {
|
|
|
|
|
quantized = 2;
|
|
|
|
|
quantizedValue = 170;
|
|
|
|
|
} else {
|
|
|
|
|
quantized = 3;
|
|
|
|
|
quantizedValue = 255;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate error (only distribute 6/8 = 75%)
|
|
|
|
|
int error = (adjusted - quantizedValue) >> 3; // error/8
|
|
|
|
|
|
|
|
|
|
// Distribute 1/8 to each of 6 neighbors
|
|
|
|
|
errorRow0[x + 3] += error; // Right
|
|
|
|
|
errorRow0[x + 4] += error; // Right+1
|
|
|
|
|
errorRow1[x + 1] += error; // Bottom-left
|
|
|
|
|
errorRow1[x + 2] += error; // Bottom
|
|
|
|
|
errorRow1[x + 3] += error; // Bottom-right
|
|
|
|
|
errorRow2[x + 2] += error; // Two rows down
|
|
|
|
|
|
|
|
|
|
return quantized;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void nextRow() {
|
|
|
|
|
int16_t* temp = errorRow0;
|
|
|
|
|
errorRow0 = errorRow1;
|
|
|
|
|
errorRow1 = errorRow2;
|
|
|
|
|
errorRow2 = temp;
|
|
|
|
|
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void reset() {
|
|
|
|
|
memset(errorRow0, 0, (width + 4) * sizeof(int16_t));
|
|
|
|
|
memset(errorRow1, 0, (width + 4) * sizeof(int16_t));
|
|
|
|
|
memset(errorRow2, 0, (width + 4) * sizeof(int16_t));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
int width;
|
|
|
|
|
int16_t* errorRow0;
|
|
|
|
|
int16_t* errorRow1;
|
|
|
|
|
int16_t* errorRow2;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Floyd-Steinberg error diffusion dithering with serpentine scanning
|
|
|
|
|
// Serpentine scanning alternates direction each row to reduce "worm" artifacts
|
|
|
|
|
// Error distribution pattern (left-to-right):
|
|
|
|
|
// X 7/16
|
|
|
|
|
// 3/16 5/16 1/16
|
|
|
|
|
// Error distribution pattern (right-to-left, mirrored):
|
|
|
|
|
// 1/16 5/16 3/16
|
|
|
|
|
// 7/16 X
|
|
|
|
|
class FloydSteinbergDitherer {
|
|
|
|
|
public:
|
|
|
|
|
FloydSteinbergDitherer(int width) : width(width), rowCount(0) {
|
|
|
|
|
errorCurRow = new int16_t[width + 2](); // +2 for boundary handling
|
|
|
|
|
errorNextRow = new int16_t[width + 2]();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
~FloydSteinbergDitherer() {
|
|
|
|
|
delete[] errorCurRow;
|
|
|
|
|
delete[] errorNextRow;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Process a single pixel and return quantized 2-bit value
|
|
|
|
|
// x is the logical x position (0 to width-1), direction handled internally
|
|
|
|
|
uint8_t processPixel(int gray, int x, bool reverseDirection) {
|
|
|
|
|
// Add accumulated error to this pixel
|
|
|
|
|
int adjusted = gray + errorCurRow[x + 1];
|
|
|
|
|
|
|
|
|
|
// Clamp to valid range
|
|
|
|
|
if (adjusted < 0) adjusted = 0;
|
|
|
|
|
if (adjusted > 255) adjusted = 255;
|
|
|
|
|
|
|
|
|
|
// Quantize to 4 levels (0, 85, 170, 255)
|
|
|
|
|
uint8_t quantized;
|
|
|
|
|
int quantizedValue;
|
|
|
|
|
if (adjusted < 43) {
|
|
|
|
|
quantized = 0;
|
|
|
|
|
quantizedValue = 0;
|
|
|
|
|
} else if (adjusted < 128) {
|
|
|
|
|
quantized = 1;
|
|
|
|
|
quantizedValue = 85;
|
|
|
|
|
} else if (adjusted < 213) {
|
|
|
|
|
quantized = 2;
|
|
|
|
|
quantizedValue = 170;
|
|
|
|
|
} else {
|
|
|
|
|
quantized = 3;
|
|
|
|
|
quantizedValue = 255;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate error
|
|
|
|
|
int error = adjusted - quantizedValue;
|
|
|
|
|
|
|
|
|
|
// Distribute error to neighbors (serpentine: direction-aware)
|
|
|
|
|
if (!reverseDirection) {
|
|
|
|
|
// Left to right: standard distribution
|
|
|
|
|
// Right: 7/16
|
|
|
|
|
errorCurRow[x + 2] += (error * 7) >> 4;
|
|
|
|
|
// Bottom-left: 3/16
|
|
|
|
|
errorNextRow[x] += (error * 3) >> 4;
|
|
|
|
|
// Bottom: 5/16
|
|
|
|
|
errorNextRow[x + 1] += (error * 5) >> 4;
|
|
|
|
|
// Bottom-right: 1/16
|
|
|
|
|
errorNextRow[x + 2] += (error) >> 4;
|
|
|
|
|
} else {
|
|
|
|
|
// Right to left: mirrored distribution
|
|
|
|
|
// Left: 7/16
|
|
|
|
|
errorCurRow[x] += (error * 7) >> 4;
|
|
|
|
|
// Bottom-right: 3/16
|
|
|
|
|
errorNextRow[x + 2] += (error * 3) >> 4;
|
|
|
|
|
// Bottom: 5/16
|
|
|
|
|
errorNextRow[x + 1] += (error * 5) >> 4;
|
|
|
|
|
// Bottom-left: 1/16
|
|
|
|
|
errorNextRow[x] += (error) >> 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return quantized;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Call at the end of each row to swap buffers
|
|
|
|
|
void nextRow() {
|
|
|
|
|
// Swap buffers
|
|
|
|
|
int16_t* temp = errorCurRow;
|
|
|
|
|
errorCurRow = errorNextRow;
|
|
|
|
|
errorNextRow = temp;
|
|
|
|
|
// Clear the next row buffer
|
|
|
|
|
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
|
|
|
|
rowCount++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if current row should be processed in reverse
|
|
|
|
|
bool isReverseRow() const { return (rowCount & 1) != 0; }
|
|
|
|
|
|
|
|
|
|
// Reset for a new image or MCU block
|
|
|
|
|
void reset() {
|
|
|
|
|
memset(errorCurRow, 0, (width + 2) * sizeof(int16_t));
|
|
|
|
|
memset(errorNextRow, 0, (width + 2) * sizeof(int16_t));
|
|
|
|
|
rowCount = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
int width;
|
|
|
|
|
int rowCount;
|
|
|
|
|
int16_t* errorCurRow;
|
|
|
|
|
int16_t* errorNextRow;
|
|
|
|
|
};
|
|
|
|
|
|
2025-12-21 17:15:17 +11:00
|
|
|
inline void write16(Print& out, const uint16_t value) {
|
|
|
|
|
out.write(value & 0xFF);
|
|
|
|
|
out.write((value >> 8) & 0xFF);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
inline void write32(Print& out, const uint32_t value) {
|
|
|
|
|
out.write(value & 0xFF);
|
|
|
|
|
out.write((value >> 8) & 0xFF);
|
|
|
|
|
out.write((value >> 16) & 0xFF);
|
|
|
|
|
out.write((value >> 24) & 0xFF);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
inline void write32Signed(Print& out, const int32_t value) {
|
|
|
|
|
out.write(value & 0xFF);
|
|
|
|
|
out.write((value >> 8) & 0xFF);
|
|
|
|
|
out.write((value >> 16) & 0xFF);
|
|
|
|
|
out.write((value >> 24) & 0xFF);
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Helper function: Write BMP header with 8-bit grayscale (256 levels)
|
|
|
|
|
void writeBmpHeader8bit(Print& bmpOut, const int width, const int height) {
|
|
|
|
|
// Calculate row padding (each row must be multiple of 4 bytes)
|
|
|
|
|
const int bytesPerRow = (width + 3) / 4 * 4; // 8 bits per pixel, padded
|
|
|
|
|
const int imageSize = bytesPerRow * height;
|
|
|
|
|
const uint32_t paletteSize = 256 * 4; // 256 colors * 4 bytes (BGRA)
|
|
|
|
|
const uint32_t fileSize = 14 + 40 + paletteSize + imageSize;
|
|
|
|
|
|
|
|
|
|
// BMP File Header (14 bytes)
|
|
|
|
|
bmpOut.write('B');
|
|
|
|
|
bmpOut.write('M');
|
|
|
|
|
write32(bmpOut, fileSize);
|
|
|
|
|
write32(bmpOut, 0); // Reserved
|
|
|
|
|
write32(bmpOut, 14 + 40 + paletteSize); // Offset to pixel data
|
|
|
|
|
|
|
|
|
|
// DIB Header (BITMAPINFOHEADER - 40 bytes)
|
|
|
|
|
write32(bmpOut, 40);
|
|
|
|
|
write32Signed(bmpOut, width);
|
|
|
|
|
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
|
|
|
|
|
write16(bmpOut, 1); // Color planes
|
|
|
|
|
write16(bmpOut, 8); // Bits per pixel (8 bits)
|
|
|
|
|
write32(bmpOut, 0); // BI_RGB (no compression)
|
|
|
|
|
write32(bmpOut, imageSize);
|
|
|
|
|
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
|
|
|
|
|
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
|
|
|
|
|
write32(bmpOut, 256); // colorsUsed
|
|
|
|
|
write32(bmpOut, 256); // colorsImportant
|
|
|
|
|
|
|
|
|
|
// Color Palette (256 grayscale entries x 4 bytes = 1024 bytes)
|
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
|
|
|
bmpOut.write(static_cast<uint8_t>(i)); // Blue
|
|
|
|
|
bmpOut.write(static_cast<uint8_t>(i)); // Green
|
|
|
|
|
bmpOut.write(static_cast<uint8_t>(i)); // Red
|
|
|
|
|
bmpOut.write(static_cast<uint8_t>(0)); // Reserved
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-21 17:15:17 +11:00
|
|
|
// Helper function: Write BMP header with 2-bit color depth
|
|
|
|
|
void JpegToBmpConverter::writeBmpHeader(Print& bmpOut, const int width, const int height) {
|
|
|
|
|
// Calculate row padding (each row must be multiple of 4 bytes)
|
|
|
|
|
const int bytesPerRow = (width * 2 + 31) / 32 * 4; // 2 bits per pixel, round up
|
|
|
|
|
const int imageSize = bytesPerRow * height;
|
|
|
|
|
const uint32_t fileSize = 70 + imageSize; // 14 (file header) + 40 (DIB header) + 16 (palette) + image
|
|
|
|
|
|
|
|
|
|
// BMP File Header (14 bytes)
|
|
|
|
|
bmpOut.write('B');
|
|
|
|
|
bmpOut.write('M');
|
|
|
|
|
write32(bmpOut, fileSize); // File size
|
|
|
|
|
write32(bmpOut, 0); // Reserved
|
|
|
|
|
write32(bmpOut, 70); // Offset to pixel data
|
|
|
|
|
|
|
|
|
|
// DIB Header (BITMAPINFOHEADER - 40 bytes)
|
|
|
|
|
write32(bmpOut, 40);
|
|
|
|
|
write32Signed(bmpOut, width);
|
|
|
|
|
write32Signed(bmpOut, -height); // Negative height = top-down bitmap
|
|
|
|
|
write16(bmpOut, 1); // Color planes
|
|
|
|
|
write16(bmpOut, 2); // Bits per pixel (2 bits)
|
|
|
|
|
write32(bmpOut, 0); // BI_RGB (no compression)
|
|
|
|
|
write32(bmpOut, imageSize);
|
|
|
|
|
write32(bmpOut, 2835); // xPixelsPerMeter (72 DPI)
|
|
|
|
|
write32(bmpOut, 2835); // yPixelsPerMeter (72 DPI)
|
|
|
|
|
write32(bmpOut, 4); // colorsUsed
|
|
|
|
|
write32(bmpOut, 4); // colorsImportant
|
|
|
|
|
|
|
|
|
|
// Color Palette (4 colors x 4 bytes = 16 bytes)
|
|
|
|
|
// Format: Blue, Green, Red, Reserved (BGRA)
|
|
|
|
|
uint8_t palette[16] = {
|
|
|
|
|
0x00, 0x00, 0x00, 0x00, // Color 0: Black
|
|
|
|
|
0x55, 0x55, 0x55, 0x00, // Color 1: Dark gray (85)
|
|
|
|
|
0xAA, 0xAA, 0xAA, 0x00, // Color 2: Light gray (170)
|
|
|
|
|
0xFF, 0xFF, 0xFF, 0x00 // Color 3: White
|
|
|
|
|
};
|
|
|
|
|
for (const uint8_t i : palette) {
|
|
|
|
|
bmpOut.write(i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Callback function for picojpeg to read JPEG data
|
|
|
|
|
unsigned char JpegToBmpConverter::jpegReadCallback(unsigned char* pBuf, const unsigned char buf_size,
|
|
|
|
|
unsigned char* pBytes_actually_read, void* pCallback_data) {
|
|
|
|
|
auto* context = static_cast<JpegReadContext*>(pCallback_data);
|
|
|
|
|
|
|
|
|
|
if (!context || !context->file) {
|
|
|
|
|
return PJPG_STREAM_READ_ERROR;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if we need to refill our context buffer
|
|
|
|
|
if (context->bufferPos >= context->bufferFilled) {
|
|
|
|
|
context->bufferFilled = context->file.read(context->buffer, sizeof(context->buffer));
|
|
|
|
|
context->bufferPos = 0;
|
|
|
|
|
|
|
|
|
|
if (context->bufferFilled == 0) {
|
|
|
|
|
// EOF or error
|
|
|
|
|
*pBytes_actually_read = 0;
|
|
|
|
|
return 0; // Success (EOF is normal)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Copy available bytes to picojpeg's buffer
|
|
|
|
|
const size_t available = context->bufferFilled - context->bufferPos;
|
|
|
|
|
const size_t toRead = available < buf_size ? available : buf_size;
|
|
|
|
|
|
|
|
|
|
memcpy(pBuf, context->buffer + context->bufferPos, toRead);
|
|
|
|
|
context->bufferPos += toRead;
|
|
|
|
|
*pBytes_actually_read = static_cast<unsigned char>(toRead);
|
|
|
|
|
|
|
|
|
|
return 0; // Success
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Core function: Convert JPEG file to 2-bit BMP
|
2025-12-30 15:09:30 +10:00
|
|
|
bool JpegToBmpConverter::jpegFileToBmpStream(FsFile& jpegFile, Print& bmpOut) {
|
2025-12-21 17:15:17 +11:00
|
|
|
Serial.printf("[%lu] [JPG] Converting JPEG to BMP\n", millis());
|
|
|
|
|
|
|
|
|
|
// Setup context for picojpeg callback
|
|
|
|
|
JpegReadContext context = {.file = jpegFile, .bufferPos = 0, .bufferFilled = 0};
|
|
|
|
|
|
|
|
|
|
// Initialize picojpeg decoder
|
|
|
|
|
pjpeg_image_info_t imageInfo;
|
|
|
|
|
const unsigned char status = pjpeg_decode_init(&imageInfo, jpegReadCallback, &context, 0);
|
|
|
|
|
if (status != 0) {
|
|
|
|
|
Serial.printf("[%lu] [JPG] JPEG decode init failed with error code: %d\n", millis(), status);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Serial.printf("[%lu] [JPG] JPEG dimensions: %dx%d, components: %d, MCUs: %dx%d\n", millis(), imageInfo.m_width,
|
|
|
|
|
imageInfo.m_height, imageInfo.m_comps, imageInfo.m_MCUSPerRow, imageInfo.m_MCUSPerCol);
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Safety limits to prevent memory issues on ESP32
|
|
|
|
|
constexpr int MAX_IMAGE_WIDTH = 2048;
|
|
|
|
|
constexpr int MAX_IMAGE_HEIGHT = 3072;
|
|
|
|
|
constexpr int MAX_MCU_ROW_BYTES = 65536;
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
if (imageInfo.m_width > MAX_IMAGE_WIDTH || imageInfo.m_height > MAX_IMAGE_HEIGHT) {
|
|
|
|
|
Serial.printf("[%lu] [JPG] Image too large (%dx%d), max supported: %dx%d\n", millis(), imageInfo.m_width,
|
|
|
|
|
imageInfo.m_height, MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Calculate output dimensions (pre-scale to fit display exactly)
|
|
|
|
|
int outWidth = imageInfo.m_width;
|
|
|
|
|
int outHeight = imageInfo.m_height;
|
|
|
|
|
// Use fixed-point scaling (16.16) for sub-pixel accuracy
|
|
|
|
|
uint32_t scaleX_fp = 65536; // 1.0 in 16.16 fixed point
|
|
|
|
|
uint32_t scaleY_fp = 65536;
|
|
|
|
|
bool needsScaling = false;
|
|
|
|
|
|
|
|
|
|
if (USE_PRESCALE && (imageInfo.m_width > TARGET_MAX_WIDTH || imageInfo.m_height > TARGET_MAX_HEIGHT)) {
|
|
|
|
|
// Calculate scale to fit within target dimensions while maintaining aspect ratio
|
|
|
|
|
const float scaleToFitWidth = static_cast<float>(TARGET_MAX_WIDTH) / imageInfo.m_width;
|
|
|
|
|
const float scaleToFitHeight = static_cast<float>(TARGET_MAX_HEIGHT) / imageInfo.m_height;
|
|
|
|
|
const float scale = (scaleToFitWidth < scaleToFitHeight) ? scaleToFitWidth : scaleToFitHeight;
|
|
|
|
|
|
|
|
|
|
outWidth = static_cast<int>(imageInfo.m_width * scale);
|
|
|
|
|
outHeight = static_cast<int>(imageInfo.m_height * scale);
|
|
|
|
|
|
|
|
|
|
// Ensure at least 1 pixel
|
|
|
|
|
if (outWidth < 1) outWidth = 1;
|
|
|
|
|
if (outHeight < 1) outHeight = 1;
|
|
|
|
|
|
|
|
|
|
// Calculate fixed-point scale factors (source pixels per output pixel)
|
|
|
|
|
// scaleX_fp = (srcWidth << 16) / outWidth
|
|
|
|
|
scaleX_fp = (static_cast<uint32_t>(imageInfo.m_width) << 16) / outWidth;
|
|
|
|
|
scaleY_fp = (static_cast<uint32_t>(imageInfo.m_height) << 16) / outHeight;
|
|
|
|
|
needsScaling = true;
|
|
|
|
|
|
|
|
|
|
Serial.printf("[%lu] [JPG] Pre-scaling %dx%d -> %dx%d (fit to %dx%d)\n", millis(), imageInfo.m_width,
|
|
|
|
|
imageInfo.m_height, outWidth, outHeight, TARGET_MAX_WIDTH, TARGET_MAX_HEIGHT);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Write BMP header with output dimensions
|
|
|
|
|
int bytesPerRow;
|
|
|
|
|
if (USE_8BIT_OUTPUT) {
|
|
|
|
|
writeBmpHeader8bit(bmpOut, outWidth, outHeight);
|
|
|
|
|
bytesPerRow = (outWidth + 3) / 4 * 4;
|
|
|
|
|
} else {
|
|
|
|
|
writeBmpHeader(bmpOut, outWidth, outHeight);
|
|
|
|
|
bytesPerRow = (outWidth * 2 + 31) / 32 * 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Allocate row buffer
|
2025-12-21 17:15:17 +11:00
|
|
|
auto* rowBuffer = static_cast<uint8_t*>(malloc(bytesPerRow));
|
|
|
|
|
if (!rowBuffer) {
|
|
|
|
|
Serial.printf("[%lu] [JPG] Failed to allocate row buffer\n", millis());
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Allocate a buffer for one MCU row worth of grayscale pixels
|
|
|
|
|
// This is the minimal memory needed for streaming conversion
|
|
|
|
|
const int mcuPixelHeight = imageInfo.m_MCUHeight;
|
|
|
|
|
const int mcuRowPixels = imageInfo.m_width * mcuPixelHeight;
|
2025-12-28 08:38:14 +09:00
|
|
|
|
|
|
|
|
// Validate MCU row buffer size before allocation
|
|
|
|
|
if (mcuRowPixels > MAX_MCU_ROW_BYTES) {
|
|
|
|
|
Serial.printf("[%lu] [JPG] MCU row buffer too large (%d bytes), max: %d\n", millis(), mcuRowPixels,
|
|
|
|
|
MAX_MCU_ROW_BYTES);
|
|
|
|
|
free(rowBuffer);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-21 17:15:17 +11:00
|
|
|
auto* mcuRowBuffer = static_cast<uint8_t*>(malloc(mcuRowPixels));
|
|
|
|
|
if (!mcuRowBuffer) {
|
2025-12-28 08:38:14 +09:00
|
|
|
Serial.printf("[%lu] [JPG] Failed to allocate MCU row buffer (%d bytes)\n", millis(), mcuRowPixels);
|
2025-12-21 17:15:17 +11:00
|
|
|
free(rowBuffer);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Create ditherer if enabled (only for 2-bit output)
|
|
|
|
|
// Use OUTPUT dimensions for dithering (after prescaling)
|
|
|
|
|
AtkinsonDitherer* atkinsonDitherer = nullptr;
|
|
|
|
|
FloydSteinbergDitherer* fsDitherer = nullptr;
|
|
|
|
|
if (!USE_8BIT_OUTPUT) {
|
|
|
|
|
if (USE_ATKINSON) {
|
|
|
|
|
atkinsonDitherer = new AtkinsonDitherer(outWidth);
|
|
|
|
|
} else if (USE_FLOYD_STEINBERG) {
|
|
|
|
|
fsDitherer = new FloydSteinbergDitherer(outWidth);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// For scaling: accumulate source rows into scaled output rows
|
|
|
|
|
// We need to track which source Y maps to which output Y
|
|
|
|
|
// Using fixed-point: srcY_fp = outY * scaleY_fp (gives source Y in 16.16 format)
|
|
|
|
|
uint32_t* rowAccum = nullptr; // Accumulator for each output X (32-bit for larger sums)
|
|
|
|
|
uint16_t* rowCount = nullptr; // Count of source pixels accumulated per output X
|
|
|
|
|
int currentOutY = 0; // Current output row being accumulated
|
|
|
|
|
uint32_t nextOutY_srcStart = 0; // Source Y where next output row starts (16.16 fixed point)
|
|
|
|
|
|
|
|
|
|
if (needsScaling) {
|
|
|
|
|
rowAccum = new uint32_t[outWidth]();
|
|
|
|
|
rowCount = new uint16_t[outWidth]();
|
|
|
|
|
nextOutY_srcStart = scaleY_fp; // First boundary is at scaleY_fp (source Y for outY=1)
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-21 17:15:17 +11:00
|
|
|
// Process MCUs row-by-row and write to BMP as we go (top-down)
|
|
|
|
|
const int mcuPixelWidth = imageInfo.m_MCUWidth;
|
|
|
|
|
|
|
|
|
|
for (int mcuY = 0; mcuY < imageInfo.m_MCUSPerCol; mcuY++) {
|
|
|
|
|
// Clear the MCU row buffer
|
|
|
|
|
memset(mcuRowBuffer, 0, mcuRowPixels);
|
|
|
|
|
|
|
|
|
|
// Decode one row of MCUs
|
|
|
|
|
for (int mcuX = 0; mcuX < imageInfo.m_MCUSPerRow; mcuX++) {
|
|
|
|
|
const unsigned char mcuStatus = pjpeg_decode_mcu();
|
|
|
|
|
if (mcuStatus != 0) {
|
|
|
|
|
if (mcuStatus == PJPG_NO_MORE_BLOCKS) {
|
|
|
|
|
Serial.printf("[%lu] [JPG] Unexpected end of blocks at MCU (%d, %d)\n", millis(), mcuX, mcuY);
|
|
|
|
|
} else {
|
|
|
|
|
Serial.printf("[%lu] [JPG] JPEG decode MCU failed at (%d, %d) with error code: %d\n", millis(), mcuX, mcuY,
|
|
|
|
|
mcuStatus);
|
|
|
|
|
}
|
|
|
|
|
free(mcuRowBuffer);
|
|
|
|
|
free(rowBuffer);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// picojpeg stores MCU data in 8x8 blocks
|
|
|
|
|
// Block layout: H2V2(16x16)=0,64,128,192 H2V1(16x8)=0,64 H1V2(8x16)=0,128
|
2025-12-21 17:15:17 +11:00
|
|
|
for (int blockY = 0; blockY < mcuPixelHeight; blockY++) {
|
|
|
|
|
for (int blockX = 0; blockX < mcuPixelWidth; blockX++) {
|
|
|
|
|
const int pixelX = mcuX * mcuPixelWidth + blockX;
|
2025-12-28 08:38:14 +09:00
|
|
|
if (pixelX >= imageInfo.m_width) continue;
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Calculate proper block offset for picojpeg buffer
|
|
|
|
|
const int blockCol = blockX / 8;
|
|
|
|
|
const int blockRow = blockY / 8;
|
|
|
|
|
const int localX = blockX % 8;
|
|
|
|
|
const int localY = blockY % 8;
|
|
|
|
|
const int blocksPerRow = mcuPixelWidth / 8;
|
|
|
|
|
const int blockIndex = blockRow * blocksPerRow + blockCol;
|
|
|
|
|
const int pixelOffset = blockIndex * 64 + localY * 8 + localX;
|
2025-12-24 22:21:41 +11:00
|
|
|
|
2025-12-21 17:15:17 +11:00
|
|
|
uint8_t gray;
|
|
|
|
|
if (imageInfo.m_comps == 1) {
|
2025-12-28 08:38:14 +09:00
|
|
|
gray = imageInfo.m_pMCUBufR[pixelOffset];
|
2025-12-21 17:15:17 +11:00
|
|
|
} else {
|
2025-12-28 08:38:14 +09:00
|
|
|
const uint8_t r = imageInfo.m_pMCUBufR[pixelOffset];
|
|
|
|
|
const uint8_t g = imageInfo.m_pMCUBufG[pixelOffset];
|
|
|
|
|
const uint8_t b = imageInfo.m_pMCUBufB[pixelOffset];
|
|
|
|
|
gray = (r * 25 + g * 50 + b * 25) / 100;
|
2025-12-21 17:15:17 +11:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mcuRowBuffer[blockY * imageInfo.m_width + pixelX] = gray;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Process source rows from this MCU row
|
2025-12-21 17:15:17 +11:00
|
|
|
const int startRow = mcuY * mcuPixelHeight;
|
|
|
|
|
const int endRow = (mcuY + 1) * mcuPixelHeight;
|
|
|
|
|
|
|
|
|
|
for (int y = startRow; y < endRow && y < imageInfo.m_height; y++) {
|
2025-12-28 08:38:14 +09:00
|
|
|
const int bufferY = y - startRow;
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
if (!needsScaling) {
|
|
|
|
|
// No scaling - direct output (1:1 mapping)
|
|
|
|
|
memset(rowBuffer, 0, bytesPerRow);
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
if (USE_8BIT_OUTPUT) {
|
|
|
|
|
for (int x = 0; x < outWidth; x++) {
|
|
|
|
|
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
|
|
|
|
|
rowBuffer[x] = adjustPixel(gray);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
for (int x = 0; x < outWidth; x++) {
|
|
|
|
|
const uint8_t gray = mcuRowBuffer[bufferY * imageInfo.m_width + x];
|
|
|
|
|
uint8_t twoBit;
|
|
|
|
|
if (atkinsonDitherer) {
|
|
|
|
|
twoBit = atkinsonDitherer->processPixel(gray, x);
|
|
|
|
|
} else if (fsDitherer) {
|
|
|
|
|
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
|
|
|
|
|
} else {
|
|
|
|
|
twoBit = quantize(gray, x, y);
|
|
|
|
|
}
|
|
|
|
|
const int byteIndex = (x * 2) / 8;
|
|
|
|
|
const int bitOffset = 6 - ((x * 2) % 8);
|
|
|
|
|
rowBuffer[byteIndex] |= (twoBit << bitOffset);
|
|
|
|
|
}
|
|
|
|
|
if (atkinsonDitherer)
|
|
|
|
|
atkinsonDitherer->nextRow();
|
|
|
|
|
else if (fsDitherer)
|
|
|
|
|
fsDitherer->nextRow();
|
|
|
|
|
}
|
|
|
|
|
bmpOut.write(rowBuffer, bytesPerRow);
|
|
|
|
|
} else {
|
|
|
|
|
// Fixed-point area averaging for exact fit scaling
|
|
|
|
|
// For each output pixel X, accumulate source pixels that map to it
|
|
|
|
|
// srcX range for outX: [outX * scaleX_fp >> 16, (outX+1) * scaleX_fp >> 16)
|
|
|
|
|
const uint8_t* srcRow = mcuRowBuffer + bufferY * imageInfo.m_width;
|
|
|
|
|
|
|
|
|
|
for (int outX = 0; outX < outWidth; outX++) {
|
|
|
|
|
// Calculate source X range for this output pixel
|
|
|
|
|
const int srcXStart = (static_cast<uint32_t>(outX) * scaleX_fp) >> 16;
|
|
|
|
|
const int srcXEnd = (static_cast<uint32_t>(outX + 1) * scaleX_fp) >> 16;
|
|
|
|
|
|
|
|
|
|
// Accumulate all source pixels in this range
|
|
|
|
|
int sum = 0;
|
|
|
|
|
int count = 0;
|
|
|
|
|
for (int srcX = srcXStart; srcX < srcXEnd && srcX < imageInfo.m_width; srcX++) {
|
|
|
|
|
sum += srcRow[srcX];
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Handle edge case: if no pixels in range, use nearest
|
|
|
|
|
if (count == 0 && srcXStart < imageInfo.m_width) {
|
|
|
|
|
sum = srcRow[srcXStart];
|
|
|
|
|
count = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rowAccum[outX] += sum;
|
|
|
|
|
rowCount[outX] += count;
|
|
|
|
|
}
|
2025-12-21 17:15:17 +11:00
|
|
|
|
2025-12-28 08:38:14 +09:00
|
|
|
// Check if we've crossed into the next output row
|
|
|
|
|
// Current source Y in fixed point: y << 16
|
|
|
|
|
const uint32_t srcY_fp = static_cast<uint32_t>(y + 1) << 16;
|
|
|
|
|
|
|
|
|
|
// Output row when source Y crosses the boundary
|
|
|
|
|
if (srcY_fp >= nextOutY_srcStart && currentOutY < outHeight) {
|
|
|
|
|
memset(rowBuffer, 0, bytesPerRow);
|
|
|
|
|
|
|
|
|
|
if (USE_8BIT_OUTPUT) {
|
|
|
|
|
for (int x = 0; x < outWidth; x++) {
|
|
|
|
|
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
|
|
|
|
|
rowBuffer[x] = adjustPixel(gray);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
for (int x = 0; x < outWidth; x++) {
|
|
|
|
|
const uint8_t gray = (rowCount[x] > 0) ? (rowAccum[x] / rowCount[x]) : 0;
|
|
|
|
|
uint8_t twoBit;
|
|
|
|
|
if (atkinsonDitherer) {
|
|
|
|
|
twoBit = atkinsonDitherer->processPixel(gray, x);
|
|
|
|
|
} else if (fsDitherer) {
|
|
|
|
|
twoBit = fsDitherer->processPixel(gray, x, fsDitherer->isReverseRow());
|
|
|
|
|
} else {
|
|
|
|
|
twoBit = quantize(gray, x, currentOutY);
|
|
|
|
|
}
|
|
|
|
|
const int byteIndex = (x * 2) / 8;
|
|
|
|
|
const int bitOffset = 6 - ((x * 2) % 8);
|
|
|
|
|
rowBuffer[byteIndex] |= (twoBit << bitOffset);
|
|
|
|
|
}
|
|
|
|
|
if (atkinsonDitherer)
|
|
|
|
|
atkinsonDitherer->nextRow();
|
|
|
|
|
else if (fsDitherer)
|
|
|
|
|
fsDitherer->nextRow();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bmpOut.write(rowBuffer, bytesPerRow);
|
|
|
|
|
currentOutY++;
|
|
|
|
|
|
|
|
|
|
// Reset accumulators for next output row
|
|
|
|
|
memset(rowAccum, 0, outWidth * sizeof(uint32_t));
|
|
|
|
|
memset(rowCount, 0, outWidth * sizeof(uint16_t));
|
|
|
|
|
|
|
|
|
|
// Update boundary for next output row
|
|
|
|
|
nextOutY_srcStart = static_cast<uint32_t>(currentOutY + 1) * scaleY_fp;
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-12-21 17:15:17 +11:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Clean up
|
2025-12-28 08:38:14 +09:00
|
|
|
if (rowAccum) {
|
|
|
|
|
delete[] rowAccum;
|
|
|
|
|
}
|
|
|
|
|
if (rowCount) {
|
|
|
|
|
delete[] rowCount;
|
|
|
|
|
}
|
|
|
|
|
if (atkinsonDitherer) {
|
|
|
|
|
delete atkinsonDitherer;
|
|
|
|
|
}
|
|
|
|
|
if (fsDitherer) {
|
|
|
|
|
delete fsDitherer;
|
|
|
|
|
}
|
2025-12-21 17:15:17 +11:00
|
|
|
free(mcuRowBuffer);
|
|
|
|
|
free(rowBuffer);
|
|
|
|
|
|
|
|
|
|
Serial.printf("[%lu] [JPG] Successfully converted JPEG to BMP\n", millis());
|
|
|
|
|
return true;
|
|
|
|
|
}
|